
SG24-5132-00

International Technical Support Organization

http://www.redbooks.ibm.com

IBM HTTP Server Powered by Apache
on RS/6000

Heinz Johner, Jouni Auer, Vitolis Bendinskas, Ng Chang Chyn, Shane Owenby, SunJong Park

IBM HTTP Server Powered by Apache
on RS/6000

March 1999

SG24-5132-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (March 1999)

This edition applies to the IBM HTTP Server powered by Apache, Version 1.3.3, as part of the IBM
WebSphere Application Server V2.0, Standard Edition and Advanced Edition, Program Numbers
39L9724 and 39L9063 for use on IBM RS/6000.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B, Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix A, “Special Notices” on page 225.

Take Note!

Contents

Figures .ix

Tables. .xi

Preface . xiii
The Team That Wrote This Redbook . xiii
Comments Welcome . xv

Chapter 1. The History of the Apache Server . 1
1.1 How It All Began. 1
1.2 The Success of the Apache Server . 2

1.2.1 Who Uses the Apache Server? . 4
1.3 IBM’s Choice of Web Server. 5

1.3.1 The IBM HTTP Server . 6
1.3.2 IBM’s Participation in the Apache Project 7

1.4 The Next Step . 8

Chapter 2. The Building Blocks . 11
2.1 Features of the Apache Server . 11
2.2 The Apache Server Model . 14

2.2.1 The DSO Concept . 14
2.2.2 Implementation of DSO in the Apache Server 15

2.3 Standard Modules in the Apache Server . 18
2.3.1 Security Modules . 20
2.3.2 Translation Modules . 21
2.3.3 Server-Management Modules . 24
2.3.4 Real-Time-Handling Modules . 26
2.3.5 Environment-Changing Modules . 28
2.3.6 Protocol-Enhanced Modules . 29
2.3.7 Dynamic-Linking Modules. 30

2.4 WebSphere and Apache. 30

Chapter 3. Installation and Initial Setup . 33
3.1 Product Contents . 33
3.2 Updates to the IBM HTTP Server . 36
3.3 Installation Prerequisites and Considerations 36
3.4 Default File and Directory Structure . 37
3.5 Installing the IBM HTTP Server . 39

3.5.1 Pre-Installation Setup . 39
3.5.2 Installing Using SMIT . 40

3.6 Initial Setup . 42
© Copyright IBM Corp. 1999 iii

3.7 Server Process Structure . 43
3.8 Running the IBM HTTP Server for the First Time 44

3.8.1 The apachectl Utility . 45
3.9 Uninstalling the IBM HTTP Server . 47

Chapter 4. Basic Configuration . 49
4.1 Recommended Directory Structure. 49
4.2 Starting and Stopping the HTTP Server . 51

4.2.1 Automatic Startup . 52
4.2.2 Automatic Shutdown. 53
4.2.3 Restarting the HTTP Server . 54

4.3 Customizing the Configuration File . 54
4.4 Enabling DSO Modules . 56
4.5 Online Documentation . 57
4.6 The Configuration File . 57
4.7 Distributed Configuration . 58

4.7.1 .htaccess and Performance . 59
4.7.2 Restricting the Directives within .htaccess Files 60

4.8 Sections . 61
4.8.1 <Directory>. 62
4.8.2 <Files> . 63
4.8.3 <Location> . 63
4.8.4 Sections Processing Rules . 64
4.8.5 Recommendations on Sections Usage . 66

4.9 Request Mapping . 66
4.10 Options . 67

4.10.1 Syntax . 68

Chapter 5. Advanced Configuration . 71
5.1 Virtual Hosts. 71

5.1.1 Concepts . 72
5.1.2 IP-Based and Name-Based Virtual Hosts 72
5.1.3 Setting It Up . 74
5.1.4 Testing . 77
5.1.5 Logging . 78
5.1.6 Compatibility with Older Browsers . 78

5.2 Automatic Directory Indexing . 80
5.2.1 Simple and Fancy Indexes . 80
5.2.2 Adding Text to an Index . 82
5.2.3 Excluding Files from an Index. 83
5.2.4 Additional Customization . 83
5.2.5 Security Considerations . 85

5.3 User Directories . 85
iv IBM HTTP Server Powered by Apache on RS/6000

5.4 Multiple Language Support . 87
5.4.1 Server Configuration. 87
5.4.2 Browser Configuration . 90

5.5 Customized Error Messages . 91
5.5.1 Customizing Error Messages . 92
5.5.2 Multilingual Error Messages . 94

5.6 File Uploading . 95
5.7 Logging . 97

5.7.1 Common Log Format . 97
5.7.2 Error Log . 100
5.7.3 Customizing the Log Format . 101
5.7.4 Rotating the Server Logs . 103

5.8 Auditing . 104
5.9 Other Features . 106

5.9.1 Fixing Typos in URLs . 106
5.9.2 Caching Proxy Function . 106

Chapter 6. Deploying Security. 111
6.1 Basic Elements of Security . 111

6.1.1 Physical Security . 112
6.1.2 Logical Security . 113
6.1.3 Authentication Schemes Supported by the IBM HTTP Server . . 118

6.2 Basic Authentication. 118
6.2.1 Setting Up Basic Authentication . 119
6.2.2 Using the .htaccess File . 123
6.2.3 Authentication Files and Databases . 124
6.2.4 Performance Impact of Basic Authentication. 127

6.3 The HTTP/1.1 Digest Authentication . 127
6.4 Secure Sockets Layer, SSL . 129

6.4.1 Principles of SSL . 130
6.4.2 Establishing the SSL Connection . 131
6.4.3 Cipher Specifications Supported by the IBM HTTP Server 133
6.4.4 The Alphabet Soup . 134
6.4.5 Creating a Self-Signed Certificate. 136
6.4.6 Using Certificates Signed by a Well-Known Trusted CA 139
6.4.7 Requesting a Certificate from an Unknown CA 142
6.4.8 Configuring the HTTP Server to Use SSL 143
6.4.9 SSL and Virtual Hosts . 145

6.5 SSL Client Authentication . 146
6.5.1 Client Certificates and the IBM HTTP Server 148

6.6 Security Considerations in the Server Configuration File 149
 v

Chapter 7. Performance and Scalability . 153
7.1 Basic Performance Consideration . 153

7.1.1 Link Bandwidth . 154
7.1.2 Hardware and Operating System . 154
7.1.3 The Web Server . 158

7.2 Performance Monitoring . 165
7.2.1 Hardware and Operating System . 165
7.2.2 Web Server . 169

7.3 Scalability for the IBM HTTP Server . 171
7.3.1 Load Balancing. 171
7.3.2 File Sharing . 174

Chapter 8. Building HTTP Server Modules . 177
8.1 The Programmer’s View of DSOs . 177

8.1.1 Hooks for the Config Phase . 179
8.1.2 Hooks for the Request Phase . 180
8.1.3 DSO Reference Lists . 183

8.2 The Apache Information Module (mod_info) 185
8.2.1 Building the Apache Information Module (mod_info) 186

Chapter 9. Migration Considerations . 191
9.1 IBM ICSS and Lotus Domino Go Webserver 191

9.1.1 Installation . 191
9.1.2 Directory Structures . 192
9.1.3 Basic Configuration . 192
9.1.4 Request Mapping . 193
9.1.5 Virtual Hosts . 194
9.1.6 Authentication and Access Control . 195
9.1.7 Logging and Reporting . 196
9.1.8 Web Applications . 197

9.2 Netscape FastTrack and Enterprise Server 198
9.2.1 Installation . 199
9.2.2 Directory Structures . 199
9.2.3 Basic Configuration . 200
9.2.4 Request Mapping . 202
9.2.5 Virtual Hosts . 204
9.2.6 Authentication and Access Control . 207
9.2.7 Logging and Reporting . 209
9.2.8 Web Applications . 210

Chapter 10. Web Applications . 213
10.1 Concepts . 213
10.2 CGI Programs . 214

10.2.1 Server Configuration. 215
vi IBM HTTP Server Powered by Apache on RS/6000

10.2.2 Environment Variables . 216
10.2.3 CGI Performance Considerations . 217
10.2.4 CGI Security . 218

10.3 Modules . 218
10.4 Server-Side Includes . 219

10.4.1 Server Configuration. 219
10.4.2 Security Considerations . 220

10.5 Image Maps . 220
10.6 Web Applications Development Languages 222

10.6.1 C . 222
10.6.2 Shell Script . 222
10.6.3 Perl. 222
10.6.4 Java . 223
10.6.5 PHP . 223
10.6.6 REXX . 223

10.7 WebSphere Application Server . 223

Appendix A. Special Notices . 225

Appendix B. Related Publications. 227
B.1 International Technical Support Organization Publications 227
B.2 Redbooks on CD-ROMs . 227
B.3 Other Publications and Links . 228

How to Get ITSO Redbooks . 229
IBM Redbook Fax Order Form . 230

List of Abbreviations. 231

Index . 233

ITSO Redbook Evaluation . 241
 vii

viii IBM HTTP Server Powered by Apache on RS/6000

Figures

1. The Apache Server Model . 17
2. Basic WebSphere Architecture . 31
3. SMIT Screen after Successful Installation . 41
4. IBM HTTP Server Welcome Screen . 45
5. IP-Based Virtual Hosts. 73
6. Name-Based Virtual Hosts. 74
7. Error Page for Compatibility on Old Browsers . 79
8. Example of a Default Automatic Directory Index . 81
9. Example of a Fancy Automatic Directory Index . 81
10. Directory Index with Additional Text. 82
11. Type Map Variants List . 88
12. MultiViews Variants List . 89
13. Netscape Communicator Language Setup . 90
14. Microsoft Internet Explorer Language Setup . 91
15. Standard Error Message . 92
16. Error Message with Server Signature . 93
17. Example of Custom Error Message . 94
18. Netscape Communicator Proxy Setup. 109
19. Logical Structure of a Web Site (Example) . 116
20. Authentication Pop-Up Dialog . 120
21. SSL in Relationship with Other Protocols . 131
22. SSL Handshake . 132
23. Creating New Key Database with IKEYMAN. 137
24. Creating a Self-Signed Certificate . 138
25. Filling in the Certificate Information . 139
26. Selecting the Personal Certificate Requests Setting 141
27. Receive Certificate from File . 142
28. Selecting Signer Certificates in IKEYMAN. 143
29. Marking/Checking a CA’s Root Certificate as Trusted. 149
30. Basic Internet Connection . 153
31. Factors Affecting Performance of a Web Server 155
32. Principle of Round-Robin DNS . 172
33. eNetwork Dispatcher Operation Flow . 173
34. Hook and Handler Relation . 178
35. Client Request Parsing Process . 181
36. Sample Output from mod_info . 186
37. HTML Form Example. 214
38. CGI Environment Variables . 217
© Copyright IBM Corp. 1999 ix

x IBM HTTP Server Powered by Apache on RS/6000

Tables

1. Web Server Market Penetration (Netcraft Ltd., February 1999) 3
2. Some Large Sites Running the Apache Web Server. 4
3. Advantages of Dynamic Linking over Static Linking 15
4. Tested Platform Supporting DSO . 16
5. Standard Modules in the Apache Server . 19
6. Standard Modules in the IBM HTTP Server Filesets 35
7. Fileset Installation Matrix . 40
8. Default and Recommended Directory Structure . 50
9. Commonly Seen Status Codes in HTTP Requests 98
10. Custom Log Format Arguments. 102
11. Operation Arguments for dbmmanage. 126
12. Cipher Specifications Supported by the IBM HTTP Server 133
13. Attributes Included in the Client’s X.509 Certificate 147
14. Module Matrix, Config Phase. 183
15. Module Matrix, Request Phase . 184
16. Directory Structure (Comparison) . 192
17. Basic Directives (Comparison). 192
18. Directory Structure (Comparison) . 200
19. Basic Directives (Comparison). 200
© Copyright IBM Corp. 1999 xi

xii IBM HTTP Server Powered by Apache on RS/6000

Preface

The reliable operation of Web servers is very important for organizations that
are present on the World Wide Web. The offering of Internet services as a
new business opportunity is largely dependent on Web servers and has
grown dramatically in the past few years.

To the surprise of many software vendors that offer their own products, a
non-commercial, freely available software has become the de-facto standard
for Web servers. Named Apache, this Web server has quickly gained more
than a 50% share in the market and it has proven to be a very versatile and
reliable Web server software. Due to this occurrence, IBM has chosen to
support the development of Apache and make it available to customers with
valuable security enhancements as part of its e-business product suites with
full IBM support.

This redbook gives a broad understanding of the architecture of the new IBM
HTTP Server powered by Apache on RS/6000, and it will help you install,
tailor and configure that software successfully.

The reader of this redbook is assumed to have some experience in running a
Web server.

The redbook introduces the general concepts of Apache and then describes
its installation and basic configuration. Advanced configuration options are
then described, followed by security implementation and setup information.
Performance and management issues are covered, as well as the
development of new modules that extend the functions of a Web server. This
redbook ends with a discussion of the migration from other Web server
software and of running applications on a Web server.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Heinz Johner is an Advisory Systems Engineer at the International Technical
Support Organization, Austin Center. He writes extensively on the Distributed
Computing Environment (DCE), security-related areas and eNetwork
deployment. Before joining the ITSO, he worked in the Professional Services
organization of IBM Switzerland and was responsible for DCE and Systems
Management in medium and large customer projects.
© Copyright IBM Corp. 1999 xiii

Jouni Auer is an I/T Specialist working at the Professional Services in Global
Services in IBM Finland. For the last few years, he has been working on
customer projects involving Internet servers, Net.Commerce software,
SET-payment and other e-business projects. Jouni has focused extensively
on UNIX-security and server management issues. He has participated in a
project of deployment of the Tivoli management in large scale environment
and improving the Internet hosting services in IBM, Finland.

Vitolis Bendinskas is a System Programmer at Sigma Americom, an IBM
Business Partner in Lithuania. In the last few years, he has been working with
IBM AIX, OS/2, DB2 and Universal Database, Lotus Notes and Domino,
Novell NetWare and Microsoft Windows. His areas of expertise include
systems management, systems programming, technical support and
consulting, as well as systems integration. Vitolis holds a degree in
mathematics from Vilnius University in Lithuania.

Ng Chang Chyn is a System Engineer at Asirius Pte. Ltd., an IBM Business
Partner in Singapore. He holds a degree in computer engineering from
Nanyang Technological University in Singapore and has been working in IBM
Business Partners in the IBM RS/6000 AIX field. He also assists with the
installation and administration of Web servers such as Netscape FastTrack
Server and Microsoft Internet Information Server, as well as developing Web
applications for his customers.

Shane Owenby is a Software Engineer working on the Apache/IBM HTTP
Server project in Research Triangle Park, North Carolina, USA. He holds a
degree in computer science with minors in business, electronics, and
mathematics. His areas of expertise include Apache, Solaris, and Linux. Shane
has provided technical reviews of technical books from O’Reilly and Associates
and book proposals from Addison Wesley-Longman.

SunJong Park is a Senior I/T Specialist working at Sales & Technical
Support Center, IBM, Korea. He has many years of experience in RS/6000
and related fields. He was responsible for System Implementation and
Management in the customer project before participating in this Apache
residency.

Thanks to the following people for their invaluable contributions to this
project:

Tara Morrell, IBM Raleigh
Richard Nesbitt, IBM Raleigh
Kevin Vaughan, IBM Raleigh
xiv IBM HTTP Server Powered by Apache on RS/6000

Special thanks go to the editors for their help in finalizing the text and
publishing the book:

Marcus Brewer
Tara Campbell

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 241
to the fax number shown on the form.

 • Use the online evaluation form found at http://www.redbooks.ibm.com

 • Send your comments in an Internet note to redbook@us.ibm.com
 xv

xvi IBM HTTP Server Powered by Apache on RS/6000

Chapter 1. The History of the Apache Server

With a great telecommunication infrastructure established by our
predecessors, it is no wonder that the evolution of the Internet has conquered
the computer world. The Internet quickly became a good channel to provide
world-wide broadcasting and dissemination of information. This means
improved communication and interaction between people regardless of their
geographical location on the globe, which draws the world even closer. Based
on definitions of the hypertext and Internet protocols, millions were even
amazed by the shear capability of the Web servers, that is, simply providing
static information.

With the growing contributions to the World Wide Web, Web servers today
have advanced in their capabilities to provide information to the public. They
no longer only provide static information, but also provide dynamic
information based on the requests submitted from clients. Furthermore, data
processing was made available on Web servers, too, which allowed
applications to process input provided by users. Electronic commerce is now
possible over the World Wide Web and users can purchase or sell items with
just a click. Inevitably, the concern for security and reliability of a Web server
becomes an important issue.

The rate at which the Web community grows comes as no surprise, and one
of the reasons is probably the ease of use of Web browsers; the “user
interface” for the World Wide Web. The technical knowledge of the Web
servers, on the other hand, requires more in-depth discussion for someone
who wishes to set up a secure and reliable Web server for his or her
environment, especially when commercial business is involved. This book
discusses the issues involved in setting up the IBM HTTP Server powered by
Apache (in the following simply referred to as the IBM HTTP Server) on IBM
RS/6000.

This first chapter gives you an overview of how the Apache server was
created, its features and IBM’s participation in the Apache project.

1.1 How It All Began

The fundamental ideas behind and the basic design of the World Wide Web
evolved from work being done at the European Laboratory for Particle
Physics (CERN) in Geneva, Switzerland. In its roots, the Apache server was
developed at the National Center for Supercomputing Application (NCSA),
and it was based on the NCSA HTTP daemon (NCSA HTTPd 1.3). The NCSA
Web server at that time was adopted and used by a large number of
© Copyright IBM Corp. 1999 1

webmasters in the market. In mid 1994, however, the development for this
Web server stalled and left many webmasters finding their own solutions to
problems encountered in their environments. Some of them developed their
own extensions and problem fixes, which could be applicable to other
webmasters searching for the same solution.

In February 1995, a group of webmasters volunteered to consolidate all
information related to the server and placed it in a publicly accessible domain
for all the webmasters to access. The Apache Group was then formed from
people who had made substantial contributions to the Apache server. NCSA
later revived the suspended development of their NCSA Web server and two
members from that development team joined the Apache Group so that ideas
and contributions could be exchanged among both projects.

The Apache Group reviewed some of the enhancements and bug fixes and
added them to their own server for testing purposes. It was in April 1995 that
the Apache server made its first public release at Version 0.6.2. This name
was given since it is the “patched” version (A PAtCHy server) of the NCSA
HTTPd 1.3 Web server.

In May-June 1995, some general overhaul and redesign was made to
fine-tune the Apache server, along with the introduction of some new features
in the Version 0.7.x. The next release of the Apache server at 0.8.8 in August
brought about a change in the architecture of the server with the modular
structure and API features. At the time of writing this book, the latest level
available for the Apache server is at Version 1.3.3, while development is in
progress for Versions 1.3.4 and 2.0.

1.2 The Success of the Apache Server

Ever since the introduction of the World Wide Web, Web servers have been
busy serving requests from Web users all over the world. With the availability
of many variations of Web server products in the market, consumers have the
freedom to choose.

How does the Apache server compare to other Web servers?

As an open source HTTP server (the term HTTP server is commonly used as
a synonym to Web server throughout the literature), the Apache server
acquired a remarkable result in capturing a substantial part of the Internet
market. According to a Web server survey conducted by Netcraft Ltd. on a
monthly basis, the Apache server has already achieved more than 50% of the
market share (see Table 1, for the Netcraft survey results as of February
2 IBM HTTP Server Powered by Apache on RS/6000

1999). For further analysis of the Web server market, please refer to
Netcraft’s Web site at http://www.netcraft.com.

Table 1. Web Server Market Penetration (Netcraft Ltd., February 1999)

Thanks to the Apache Group and their goal to develop and support open
software, webmasters from all over the globe have the opportunity to obtain
the Apache server for free, including all the latest modules and fixes. Despite
the fact that it is free, the Apache server runs on the most widely used
platforms with great performance and extensible features. It also progresses
with the advance development of the HTTP standards, such as the latest
HTTP/1.1 protocol, and remains compatible with HTTP/1.0. An impressive
graphical representation of the survey conducted by Netcraft Ltd. on the
growth of Web servers usage over the past few years can be found at:
http://www.netcraft.com/survey.

As the most popular Web server, there is no doubt about the quality and
features that Apache can offer. Since it was developed with
platform-independence in mind, the Apache server runs traditionally on all
major variants of UNIX, Windows 95 and NT (only after Apache 1.3b3) and
OS/2 Warp. In addition, it also supports the HTTP/1.1 protocol and utilizes
the APIs specific to the operating systems, such as the Internet Server
Application Programming Interface (ISAPI) used on Windows NT. The
modular design (to be covered in 2.2, “The Apache Server Model” on page
14) of the Apache server enables flexibility in customizing the Web server to
any specific environment. Apart from the standard modules that come with
the Apache server, new modules are also developed and contributed by
individuals and organizations to help other webmasters function effectively in
their environment. Besides adding more beneficial modules to further
improve the functionality of the server, any problem discovered can be
reported to the Apache Group and actions will be taken so that the
corresponding fix is readily available in a minimum amount of time. As of
today, this avalanche process of development on the Apache server, known
as the Apache Project, has already created a robust and reliable server as
the user base expands throughout the globe. The Apache Group has set forth
very high standards for code contributions, which results in a high level of

Server February 1999 Percent

Apache 2350748 54.7

Microsoft IIS 1008566 23.5

Netscape Web Servers (FastTrack and Enterprise) 178027 4.1

Other Web Servers approx. 760000 17.7
The History of the Apache Server 3

quality and robustness of the Apache server. In fact, some special design
principles have been introduced just to increase the robustness of the
Apache server and to overcome some common problems in operating
systems, such as memory leaks, that could negatively interfere with the Web
server.

1.2.1 Who Uses the Apache Server?
The Apache server is the Web server behind thousands of Web sites on the
Internet today. Table 2 contains just a few of the larger companies and their
respective URLs that are currently using Apache as their corporate Web
servers.

Table 2. Some Large Sites Running the Apache Web Server

Organization Name URL

Webcrowler http://www.webcrowler.com

Financial Times http://www.ft.com

The British Monarchy http://www.royal.gov.uk

W3C Consortium http://www.w3.org

SIPB at MIT http://www.mit.edu

Hotmail http://www.hotmail.com

GeoCities http://www.geocities.com

The Internet Movie Database Ltd. http://www.imdb.com

JavaSoft http://java.sun.com

Organic Online, Inc. http://www.organic.com

The architecture for the entire Apache server (to be discussed in 2.2, “The
Apache Server Model” on page 14) can be imagined as a server
constructed with pieces of building blocks, called modules. Each of these
modules performs specific tasks for the main core block that does all the
coordination work. The standard modules come packaged with the Apache
server when downloaded from the Apache Group’s Web site
(http://www.apache.org). Developers around the world make customized
modules available from modules.apache.org or from the respective
developer’s Web site.

What are Modules?
4 IBM HTTP Server Powered by Apache on RS/6000

Of course, the information listed in Table 2 is only a snapshot, valid at the
writing time of this book.

1.3 IBM’s Choice of Web Server

On June 22, 1998, IBM made the following announcement:

IBM will ship the Apache HTTP server with the IBM WebSphere Application
Server, helping current Apache users to evolve to e-business solutions. As
part of the WebSphere Application Server package, IBM will provide
commercial, enterprise-level support for the Apache HTTP Server. In
addition, IBM will be a full participant in the Apache HTTP Server Project, a
collaborative development effort, and will make contributions to enhance the
capabilities of the Apache HTTP Server.

What are the benefits for this partnership? With the recognition of the quality
and power of the open source development of the Apache Group, IBM can
assure the delivery of an HTTP server that is exactly what customers want. As
the fastest growing server in the Internet world, the Apache server allows IBM
to follow the HTTP server market with the help of its leading momentum. In
addition to the large installed base and webmasters who are already familiar
with the Apache server, IBM has also a good starting point in creating
awareness of the IBM WebSphere Application Server in the market (see note
below). An overview of how the Apache server fits into the IBM WebSphere
Application Server package is given in 2.4, “WebSphere and Apache” on
page 30.

Conversely, IBM helps the Apache Group to boost the status of a freeware
product into a larger enterprise market. Large corporations which hesitated to
adopt the use of a widely available product with no brand name are now more
assured as IBM joins in the support in the development of the Apache server.
With the additional force of engineers and developers from IBM, the Apache
Group has a stronger development team focussed on providing open-source
software. IBM customers can benefit from having their common support
structure for the IBM HTTP Server (which is IBM’s name for the Apache
server) while non-IBM customers can benefit from quality and function
enhancements brought to the Apache server by IBM and its customers.
The History of the Apache Server 5

1.3.1 The IBM HTTP Server
IBM named the Apache server to be shipped with the IBM WebSphere
Application Server V2.0 the IBM HTTP Server. Besides AIX, versions running
on Windows NT and Solaris are also available from IBM. At the time of writing,
IBM has announced that a version will be provided for AS/400, too. The IBM
HTTP Server is basically a Web server based on the Apache server V1.3.3,
with some additional adjustments that are discussed in this section. As the
development of the Apache server in the Apache Group progresses, IBM will
incorporate new technology and fixes in the IBM HTTP Server. It should be
mentioned that IBM is not developing its own version of Apache, but rather
ships a compiled and ready-to-use version that strictly follows the open
software concept of Apache.

Installation for the IBM HTTP Server has been made easier by catering for their
specific platform. System administrators of operating systems such as AIX
simply need to install the “installp” version through SMIT (System Management
Interface Tool) or using the “install shield” for NT environment. Unlike the IBM
HTTP Server, the downloaded Apache server, although available in binary
versions for most operating systems, requires more steps before the relevant
files are extracted for installation and, if a customized version is desired, the
code is compiled and linked.

The IBM HTTP Server comes as a compiled and tested version of the Apache
server for the specific platforms. Users have the convenience of using the
modular structure of the IBM HTTP Server and including or excluding modules to
suit their needs. All configurations pertaining to the IBM HTTP Server are
consolidated into one configuration file (httpd.conf) provided with the product, as
compared to the downloaded Apache server, which provides three files
(httpd.conf, srm.conf and access.conf) to comply with previous versions which
may require more maintenance. Furthermore, as the name implies, no
compilation is needed for the pre-compiled IBM HTTP Server. Installation of the
IBM HTTP Server on RS/6000 is explained in Chapter 3, “Installation and Initial
Setup” on page 33.

The IBM WebSphere Application Server V2.0 package consists of a
comprehensive set of Web-based application enablers for electronic
commerce application development. While the application server programs
(servlets) that run on top of an HTTP server deal with linking client
applications with data, the HTTP server deals with the communication
between the Web users via the Web browsers and the database software.

 About IBM WebSphere
6 IBM HTTP Server Powered by Apache on RS/6000

To prevent any security breaches, the most important enhancement in the
IBM HTTP Server over the Apache server is the addition of the Secure
Sockets Layer (SSL) function, which supports up to SSL V3 Triple-DES SHA.
A more detailed description and how to set up SSL can be found in 6.4,
“Secure Sockets Layer, SSL” on page 129.

Due to U.S. export regulation restrictions, IBM cannot provide the source
code for the IBM HTTP Server because it would expose interfaces to SSL
libraries that are controlled by these regulations. However, webmasters can
still add modules dynamically to the IBM HTTP Server, as we will discuss in
2.2, “The Apache Server Model” on page 14 and Chapter 8, “Building HTTP
Server Modules” on page 177.

1.3.2 IBM’s Participation in the Apache Project
IBM has a group of people dedicated to the support of Apache and the IBM
HTTP Server. A test team is involved in testing new developments on the
server. IBM has two representatives as members in the core team of the
Apache Group. The core team deals with the server core development; there
is another team specialized in developing value-added modules. The entire team
has already made a major contribution in implementing the Fast Response
Cache Accelerator (FRCA) feature on the Apache Server that runs on Windows
NT. This feature uses the kernel space cache that dramatically increases the
performance of the Apache server. Due to IBM’s involvement, it can be assumed
that the next platform to have the FRCA technology implemented will be AIX.

Developments made within IBM will go through an internal review before they
are submitted to the Apache Group for voting. Thus the compatibility between
the IBM HTTP Server and the Apache server is maintained. Similarly, any
problems reported by customers pertaining to the core server will be, perhaps
along with some suggested corrections, fed back to the Apache Group for their
necessary actions. However, bugs pertaining to the additional functions that IBM
offered will be dealt with by IBM developers.

For IBM customers, rather than posting the questions and doubts to the
Apache Group or searching the answers through the massive documentation

Secure Sockets Layer (SSL), developed by Netscape Communications
Corporation, is a widely accepted protocol that uses the RSA public key
cryptography for communication authentication and encryption between
clients and servers.

 What is Secure Sockets Layer?
The History of the Apache Server 7

provided on the Web or news group, they can get support on the IBM HTTP
Server through established IBM support channels just like with any other IBM
product. IBM customers may also visit the IBM newsgroup
ibm.software.websphere.http-servers at news.software.ibm.com. This
newsgroup is maintained by the IBM development and support teams.

1.4 The Next Step

The Apache Group will continue to offer the Apache server as a free open
source server for the public, and keep in pace with the new developments of
the Web as well as the HTTP protocol. They will also continue to respond to
users by reviewing suggestions, terms of fixes, and improvements. IBM is
following the Apache Group towards the development of an even more
enhanced Web server that can meet the future needs of advancement in the
Web environment. Apart from contributing to the Apache Project, the Web
server development team at IBM is looking into the upgrade in functionality
and performance for the base HTTP Server in future releases.

At present, the Apache Group is looking into these areas of enhancement for
the next release of the Apache server, Version 2.0:

 • Multi-Threading — Multi-threaded support involves the use of only one HTTP
daemon handling requests via inter-process communication for the
coordination of operations such as content retrieval. This method, which is
already implemented on the Apache server for the Windows NT, may provide
better overall performance on those platforms where threads are well
implemented. The current version running on UNIX spawns multiple
processes of the HTTP daemon to handle the requests, which might
consume more resources (but provides the advantage that a single process
can abort without affecting the others).

 • Better system configuration — At present, the file Configure, which
contains hard-coded definitions for some particular platforms is being
reviewed for better compatibility with other platforms that are not
supported now.

 • Stabilized API model — The developers are deriving a more stabilized API
model to prevent disruption in modules development and also to ease the
process of developing new modules. Documentation on the use of the
modules should also be informative for anyone who wants to write or use
the modules more efficiently in their environment.

 • Configuration Syntax — The syntax used in languages for the
configuration files are also reviewed to remove any limitations and
ambiguities from the webmasters.
8 IBM HTTP Server Powered by Apache on RS/6000

 • Source code language — The Apache release 2.0 may be written in C++.

 • Graphical user interface (GUI) — The current version of the Apache server
requires the webmaster to be conversant with the AIX environment, or at least
UNIX commands. Though a command-based interface is enough to do
wonders, a graphical user interface (GUI) would ease administration for less
experienced webmasters, as well as the experts who wished to eliminate
complication in advanced server configurations. As of the writing of this book,
there is already some development under the Apache GUI-Dev Project that is
aimed to accomplish this task in the near future.

Since IBM is working together with the Apache Group, customers can expect
to see the above enhancements to also be present in the IBM HTTP Server.
The History of the Apache Server 9

10 IBM HTTP Server Powered by Apache on RS/6000

Chapter 2. The Building Blocks

There are millions of people accessing the World Wide Web every day. This
is mostly because it requires only basic skills to use a Web browser to surf
the Web. Webmasters, on the other hand, need to know a little more. They
could, of course, simply follow guided instructions and have a Web server up
and running without the need of an in-depth understanding of the Web server
they are using. For those webmasters who want or need more than just
step-by-step checklists, this chapter lists and describes the working
mechanism of the Apache Web server. Since the IBM HTTP Server is basically
identical to the Apache server (with the exception of the added SSL support), the
original Apache server model is selected as a base for the discussion in this
chapter.

In the section that follows, some general features of the Apache server are
explained. In the second section of this chapter, some specialities about the
architecture are discussed. The sections that follow explain all the modules
that come with the Apache server and how the IBM HTTP Server fits in the
IBM WebSphere architecture.

2.1 Features of the Apache Server

As a Web server, the Apache core server fulfills the basic necessity of any
Web server. In addition, due to the flexibility of modular design, the server’s
functionality can be greatly configured and enhanced to suit any environment
easily. The following sections list and describe the most important features of
the Apache server, which are available in the downloadable version of the
Apache server (http://www.apache.org/dist/binaries). The IBM HTTP Server
is identical to the Apache server (except for IBM’s addition of the SSL
security) so these features apply to both the Apache server and the IBM
HTTP Server.

Dynamic Shared Objects (DSO) – The most important feature of the Apache
server is probably the concept of modules. The core Apache server provides
basic Web server functionality while requiring very few resources. As
requirements grow, functionality can easily be added to the Apache server
through modules. There are a lot of modules available for the Apache server.
These modules can either be built into the core Web server or loaded
dynamically. Due to the U.S. government restrictions on the export of SSL
technology, the IBM HTTP Server cannot be shipped in a state to allow modules
to be statically built into the Web sever core. Due to these restrictions, modules
can only be added to the IBM HTTP Server as dynamic shared objects (DSOs).
© Copyright IBM Corp. 1999 11

DSOs are mentioned and explained at various places in this book, specifically
in 2.2.1, “The DSO Concept” on page 14.

HTTP Compliance – The Apache Group is always on the cutting edge in
standards activities. The HTTP protocol implementation in Apache was
chiefly architected by one of the HTTP/1.1 authors. Also Apache is being
used as one of the two reference implementations for the HTTP/1.1 proposal
to move to draft standard. This ensures that Apache (and therefore the IBM
HTTP Server) will be compatible with the greatest percentage of the Web
clients and agents in use on the Internet today. For more information on
Internet Protocols visit http://www.w3.org/Protocols/.

Persistent Connections – This feature allows inline objects to be
downloaded from the server using a single connection. Web pages today
have evolved from a static text document to the inclusion of multi-media
presentations containing sounds or animations. Each of these objects require
separate TCP connections for downloading, which causes a great deal of
unneeded TCP overhead, including opening the new connection, and closing
down the new connection. With the introduction of persistent connection in
the HTTP/1.1 specification, the server keeps the connection opened and
assumes subsequent requests on that same connection by default. Since the
same TCP connection can be used, the server saves the overhead of the new
TCP connection. In order for persistent connections to be used, both the
server and client must support HTTP 1.1.

Byte Ranges – With HTTP/1.1, browsers can request a specific range of
bytes for the document to be downloaded in a single request. This is useful
when the requested document is lengthy and only a specific portion of it is
required. In addition, this feature can also be used to resume the process of
downloading after a transfer of a document has been interrupted in a
previous attempt.

Virtual Hosts – One of the key features of the Apache server is the support
of virtual hosts (to be further discussed in 5.1, “Virtual Hosts” on page 71). A
single server can serve requests sent to different server names or even IP
addresses. Thus, a single server can appear and behave exactly as if there
were more than one server involved. This feature is very useful for running a
single Web server machine to serve multiple domains.

Error Logging and Processing – By default, as governed by the HTTP
protocol, errors encountered by the Web server when attending to client
requests are returned to the browsers with an error number and some
standard messages. The Apache server has two log files, access_log and
error_log. The former is used to log information about who requested which
12 IBM HTTP Server Powered by Apache on RS/6000

information with the resulting status, the latter contains information about
failed requests and the probable cause. Webmasters can customize error
messages, to be covered in 5.5, “Customized Error Messages” on page 91.
Besides the messages, the server can be configured to execute scripts that
analyze the problem or perform some remedial actions for the error
conditions before returning informative responses to the clients.

Content Negotiation – Another key feature of the Apache server is its ability
to perform content negotiation. This feature allows the server to negotiate
with the client before retrieving the most appropriate information based on the
client's settings. In simpler terms, the browser tells the server how capable it
is to accept different kinds of content and the server determines the most
appropriate type of content to be returned to the browser. This is extremely
useful for serving selective contents such as language-specific documents
that are retrieved based on the settings on the browsers. Another common
area of use are requests for information concerning a particular media-type,
such as graphic images (for example GIF or JPEG), where the browser can
inform the server of its preferences. The configurations required on the server
and the browser to support content negotiation is dealt with in 5.4, “Multiple
Language Support” on page 87.

Automatic Index File Selection and Index Creation – With this feature,
webmasters can specify default directory index files (for example index.html)
or the format of automatically created directory indexes to be returned to the
client when an index was requested for a specific directory, for example by
specifying a “/” character as the last character in an URL. The IBM HTTP
Server (Apache) supports several options for customizing automatically
created directory indexes, including HTML file headers, text files or even
involving CGI programs. To learn how to configure automatic directory
indexing, refer to 5.2, “Automatic Directory Indexing” on page 80.

User Authentication – There are several methods provided by the Apache
server for implementing user authentication. Webmasters can make use of
flat files to create a database containing the list of users allowed to retrieve
information from the server. User authentication for large groups of users can
be also done using DBM files supported by the Apache server to speed up
the process of checking user names against the list. More information about
user authentication and security can be found in Chapter 6, “Deploying
Security” on page 111.

Stability – Although this word sounds like it is from a sales brochure, it
should be mentioned that the development principles of the Apache server
involve a number of special precautions that guarantee a high level of
robustness. To mention two of them: The Apache Group sets high standards
The Building Blocks 13

on how the source code of any enhancements or bug fixes must be written in
order to be evaluated and accepted. Another precaution is that the Apache
server consists of multiple processes within the operating system and that
each only processes a definitive number of requests before it terminates
intentionally. This avoids certain problems that can arise with long-living
processes (see also 3.7, “Server Process Structure” on page 43).

Popularity – Since every new software introduced also introduces parasite
costs for training and education of the involved personnel, it is beneficial
when that software is well known on the market. Apache, as was shown in
1.2, “The Success of the Apache Server” on page 2, is the most successful
Web server on the market, and thus, most Web administrators already have a
good understanding of at least the fundamentals of this Web server.

2.2 The Apache Server Model

Before we start exploring each component of the Apache server, there is one
important concept that needs to be mentioned and understood. It is the
concept of Dynamic Shared Objects (DSO). It differentiates the Apache Web
server from most, if not all, other Web servers.

2.2.1 The DSO Concept
Traditionally, applications used a method known as static linking to resolve
procedure calls in the executable programs. The linking is done when the
executable program is compiled and linked. Dynamic linking, on the other
hand, allows external symbols (procedures) that are referenced in the
application code, but are defined in a separate shared library. They are
resolved only during run-time execution. Dynamic shared objects (DSOs) in
the Apache server are fragments of application code (shared resources) that
may be loaded and executed only at run-time when necessary. There are
basically two implementations of dynamic linking making use of DSO.

 • The first method is to make use of a dynamic or shared library containing
the DSOs which are normally located in a system directory. When the
program to be executed is built, the linker hard codes the path of the
dynamic library into the program. With these references to the location of
the objects (library), the UNIX loader then resolves the unresolved
symbols in the program at start-time.

 • The other method focuses on individual object files usage. These object
files are usually located at a program-specific directory, and they are
loaded only when required by the application code.
14 IBM HTTP Server Powered by Apache on RS/6000

One of the advantages of using dynamic libraries is the efficient use of disk
space since the libraries only need to be stored once for all the programs
sharing them. Similarly, memory resources are used more efficiently because
only those libraries are loaded that are actually necessary for the application
to function. Also, the latter method allows for more efficient testing of single
object files without the need to load the entire library. On the whole, dynamic
linking contributes to many different areas in application design, as shown in
Table 3.

Table 3. Advantages of Dynamic Linking over Static Linking

Note: It should be mentioned at this point that Apache also offers the option
of either DSOs or statically linking modules to the base server, which requires
not only a configuration change, but also a compile and link operation.
However, due to the addition of the SSL security code, which is subject to
U.S. export restrictions, the IBM HTTP Server cannot be recompiled. So, the
only option for modules with the IBM HTTP Server is through the DSO
support.

2.2.2 Implementation of DSO in the Apache Server
As of the 1.3 version of the Apache server, both methods of using modules
mentioned above are supported. Thus, the HTTP main process can be seen

Scope Description

Scalability There is virtually no limit to the amount of compiled code that can
be (dynamically) added.

Development Time The development and test cycle of a program can be drastically
reduced as it gets larger in size. Even small changes can take an
extraordinary amount of time to re-link (and test) a whole
executable if it has to be updated.

Memory Memory consumption is normally reduced because not all
possible dynamic modules need to be loaded at all times.

Disk Space Dynamic linking saves disk space since common code is not
included in each executable program.

Down Time The server needs not be shut down in order to add new dynamic
modules.

Start Time Start time is reduced because the shared library code does not
need to be loaded at start time, but only when required.

Performance Performance may be improved because fewer page faults will be
generated when the shared library code is already in memory.
The Building Blocks 15

as the executing program, while the object files can be seen as the Apache
modules that build up much of the functionality of the Apache server.

Using the second method, individual modules, when built as DSOs, can be
easily added by using the LoadModule and AddModule directives in the
server configuration file. Also, a new program called apxs (originated from
“APache eXtenSion”) is available to simplify the creation of DSO files for the
Apache modules. The use of DSOs is increasing and Apache already
supports dynamic modules on the operating systems listed in Table 4.

Table 4. Tested Platform Supporting DSO

The concept of DSOs is one of the key feature of the Apache server. With this
dynamic capability, as briefly mentioned in Table 3 on page 15, modules can
be loaded into the server process space at run-time, thus resulting in a
significant overall reduction in memory usage. In addition, the development
process for extending the functionality of the server is greatly enhanced
without the need for re-compilation. For further information about
implementing modules, see Chapter 8, “Building HTTP Server Modules” on
page 177, or read the documentation at http://www.apache.org/docs/dso.html.

Operating System Version

FreeBSD 2.1.5, 2.2.5, 2.2.6

OpenBSD 2.x

NetBSD 1.3.1

Linux Debian/1.3.1, RedHat/4.2

Solaris 2.4, 2.5.1, 2.6

SunOS 4.1.3

Digital UNIX 4.0

IRIX 6.2

HP/UX 10.20

UnixWare 2.01, 2.1.2

SCO 5.0.4

AIX 3.2, 4.1.5, 4.2, 4.3

ReliantUNIX/SINIX 5.43

SVR4 -
16 IBM HTTP Server Powered by Apache on RS/6000

Figure 1. The Apache Server Model

The block diagram shown in Figure 1 shows a simplified model of the Apache
server. The parent at the top depicts the Apache main server process setting
up its own environment before multiple child processes are spawned based
on the specific configuration parameters. Basically, the entire operation can
be divided into the processes as shown, where the parent reads the
configuration files and performs module initialization. Thereafter, the server
deals with initialization of the child processes to handle requests from the
clients. As mentioned earlier, the HTTP processes can be viewed as the core
executable programs in the DSO concept discussion, while the modules are
the dynamic modules loaded at run-time. Most modules support their specific
set of directives. Directives are used widely in the configuration file(s) to
denote a certain behavior or instructions to be performed or enforced on
resources, such as files or directories.

The directives within the server’s configuration file(s) are the webmaster’s
controls for the modules. Some modules require little configuration, while
others support a fairly larger number of directives that control their operation.

Request

Parsing

Child Child

Parent

Child Child

Config Phase

Request Phase

Configuration

Initialization
and

Request

Parsing

Request

Parsing

Request

Parsing
The Building Blocks 17

2.3 Standard Modules in the Apache Server

As explained earlier, a module is simply a piece of C code that is compiled into
the Apache server statically or added dynamically at runtime. The set of standard
modules that come along with the downloaded package is listed in Table 5 on
page 19. Since the IBM HTTP Server is based on Apache, it has the ability to
either build modules statically into the core or load them dynamically. Due to U.S.
export regulations, the IBM HTTP Server is not legally allowed to ship complete
source code due to the inclusion of the SSL technology. Because of this,
modules can only be added dynamically to the IBM HTTP Server. Due to security
concerns, the IBM HTTP Server does not provide the mod_info module, which
provides a list of information about the configuration of the server and the
modules that are loaded. However, if webmasters choose to use this module,
they can follow the instructions outlined in Chapter 8, “Building HTTP Server
Modules” on page 177. The modules shipped with the Apache server are listed in
18 IBM HTTP Server Powered by Apache on RS/6000

Table 5 on page 19, and the modules included with the IBM HTTP Server are
listed in Table 6 on page 35. All of the modules are briefly discussed below.

Table 5. Standard Modules in the Apache Server

Name Description Classification

mod_access
mod_actions
mod_alias
mod_asis
mod_auth
mod_auth_anon
mod_auth_db
mod_auth_dbm
mod_autoindex
mod_cern_meta
mod_cgi
mod_digest
mod_dir
mod_env
mod_expires
mod_headers
mod_imap
mod_include
mod_info
mod_log_agent
mod_log_config

mod_log_referer
mod_mime

mod_mime_magic

mod_negotiation
mod_rewrite

mod_setenvif

mod_so
mod_speling
mod_status
mod_unique_id

mod_userdir
mod_usertrack

Host-based access control
Filetype/method-based script execution
Aliases and redirects
The “asis” file handler
User authentication using text files
Anonymous user authentication, FTP-style
User authentication using Berkeley DB files
User authentication using DBM files
Automatic directory listings
Support for HTTP header metafiles
Invoking CGI scripts
MD5 authentication
Basic directory handling
Passing of environments to CGI scripts
Apply Expires: headers to resources
Add arbitrary HTTP headers to resources
The imagemap file handler
Server-parsed documents
Server configuration information
Logging of User Agents
User-configurable logging replacement for
mod_log_common
Logging of document references
Determining document types using file
extensions
Determining document types using "magic
numbers"
Content negotiation
Powerful URI-to-filename mapping using
regular expressions
Set environment variables based on client
information
Support for loading modules at runtime
Automatically correct minor typos in URLs
Server status display
Generate unique request identifier for every
request
User home directories
User tracking using Cookies (replacement
for mod_cookies.c)

Security
Real-time
Translation
Protocol enh.
Security
Security
Security
Security
Real-time
Protocol
Real-time
Security
Translation
Management
Protocol enh.
Protocol enh.
Real-time
Real-time
Management
Management
Management

Management
Translation

Translation

Translation
Translation

Env.-changing
Dynamic-linking
Real-time
Management
Management

Translation
Management
The Building Blocks 19

2.3.1 Security Modules
As the name implies, modules under this category deal with security
enforcement measures on the server. The Apache server provides modules
to suit different authentication schemes. These modules generally handle the
three phases of user authentication and authorization: Verify User ID, Verify
User Access and Check Access.

mod_access
This module deals with basic security checks based purely on hostname or IP
address at the early stages of request parsing.

Directives:

 • order – 'allow,deny', 'deny,allow', or 'mutual-failure'

 • allow – 'from' followed by hostnames or IP-address wildcards, or ’env=’

 • deny – 'from' followed by hostnames or IP-address wildcards or ’env=’

mod_auth
This module deals with user security checks based text files after the Check
Access stage.

Directives:

 • AuthUserFile – Text file containing usernames and passwords

 • AuthGroupFile – Text file containing group names and member usernames

 • AuthAuthoritative – Set to 'off' to allow access control to be passed along
to other modules if the user ID is not known to this module

mod_auth_anon
This module offers the use of anonymous log in using the username as
“anonymous” and password as the e-mail address of the requesting user,
similar to the FTP-implementation.

Directives:

 • Anonymous – A list of user IDs separated by spaces

 • Anonymous_MustGiveEmail – Controls the need for an e-mail address

 • Anonymous_NoUserId – If set ’on’, no user ID is required

 • Anonymous_VerifyEmail – If set ’on’, e-mail address is verified

 • Anonymous_LogEmail – If set ’on’, e-mail address is logged

 • Anonymous_Authoritative – If set 'on', user ID must fulfill one of the users
specified in the list under the Anonymous directive
20 IBM HTTP Server Powered by Apache on RS/6000

mod_auth_db
This module offers user security checking using Berkeley DB files in DB
format that are used to hold information pertaining to a large group of users
more efficiently than just plain text files.

Directives:

 • AuthDBUserFile – DB file containing usernames and passwords

 • AuthDBGroupFile – DB file containing group names and member
usernames

 • AuthDBAuthoritative – Set to 'off' to allow access control to be passed
along to other modules if the user ID is not known to this module

mod_auth_dbm
This module offers user security checking using DBM files which are more
efficient and convenient to manage when the number of users is large. A
DBM file contains a key (normally the username) used for fast retrieval
through indexing, and a value (the encrypted password).

Directives:

 • AuthDBMUserFile – DBM file containing usernames and passwords

 • AuthDBMGroupFile – DBM file containing group names and member user
names

 • AuthDBMAuthoritative – Set to 'off' to allow access control to be passed
along to other modules if the user ID is not known to this module

mod_digest
This module offers user security checking using MD5 Digest Authentication.
Digest Authentication involves the client browser encrypting the user’s
password before sending it to the server for decrypting. With this module, the
server is capable of handling this kind of security measures provided the
client’s browser has the capability to do the encryption.

Directives:

 • AuthDigestFile – digest file containing user IDs and passwords

2.3.2 Translation Modules
Modules in this category deal mainly with the translation of Web addresses.

mod_alias
This module translates Web addresses to filesystem locations in the
document tree.
The Building Blocks 21

Directives:

 • Alias – Maps a virtualname to a realname

 • ScriptAlias – Maps a virtualname to a realname and executes the script

 • Redirect – Provides an optional status, then redirects old URL to new URL

 • AliasMatch – Uses a regular expression and maps it to a filename

 • ScriptAliasMatch – Uses a regular expression and maps it to a script name

 • RedirectMatch – Provides an optional status, then redirect URL of certain
regular expression to destination URL

 • RedirectTemp – Reports a temporary status then redirects to destination
URL

 • RedirectPermanent – Reports a permanent status, then redirects to
destination URL

mod_dir
This module tells the server the name of the file to return as the index of the
directory being accessed. It comes into play when someone connects to a
Web site with a URL that ends in a slash or a directory name, not a file name,
as for example in http://www.CompanyA.com/.

Directives:

 • DirectoryIndex – Identifies the index file that Apache should look for before
creating a dynamic directory index

mod_mime
This module informs the server of the type of files based on the file
extensions.

Directives:

 • AddType – A mime type followed by one or more file extensions for
determination of content type

 • AddEncoding – An encoding (such as gzip), followed by one or more file
extensions for determination of encoding type

 • AddLanguage – A language (such as fr), followed by one or more file
extensions for determination of language type

 • AddHandler – A handler name followed by one or more file extensions for
assignment of handler to react to these files

 • ForceType – Forced a media type
22 IBM HTTP Server Powered by Apache on RS/6000

 • RemoveHandler – A handler name followed by one or more file extensions
for removal of handler

 • SetHandler – A handler name to parse all matching files

 • TypesConfig – Sets location of the MIME types config file

mod_mime_magic
This module determines the MIME type of a file based on magic numbers and
some bytes in the contents of the file.

Directives:

 • MimeMagicFile – Name of the MIME Magic file

mod_negotiation
Based on the client’s capability to accept the requested document, it selects
the most appropriate one and returns it to the client. There are two ways of
handling such situations, namely by using file extensions that map to the
standard language tag (application/x-type-map) or by using a variants file that
categorizes all the documents along with their representation types
(type-map), according to the common resources they represent.

Directives:

 • CacheNegotiatedDocs – No arguments (either present or absent), but
provides caching of documents on proxy servers

 • LanguagePriority – A list of MIME language abbreviations separated by
space for the language selection priority when no preference is stated
from client’s browser

mod_rewrite
This module is not compiled by default, but it is a powerful tool to rewrite
URLs on the fly. It supports unlimited sets of rules that operate many
variables like the server variable, environment variable, HTTP headers,
timestamps, and so forth, as well as their respective conditions. It operates
on full URLs in both the server context and the directory context.

Directives:

 • RewriteEngine – On or Off to enable or disable (default) the whole
rewriting engine

 • RewriteOptions – List of option strings to set

 • RewriteBase –The base URL of the per-directory context for rewrites

 • RewriteCond – An input string and a to-be-applied regular expression
pattern for definition of a rule condition
The Building Blocks 23

 • RewriteRule – A URL-applied regular expression pattern and a
substitution URL for rewriting

 • RewriteMap – A mapname and a filename for substitution of strings of a
rewriting rule

 • RewriteLock – The filename of a lockfile used for inter-process
synchronization

 • RewriteLog – The filename of the rewriting logfile

 • RewriteLogLevel –The level of the rewriting logfile verbosity (0=none,
1=std, .., 9=max)

mod_userdir
This module deals with translation of URLs to a user’s home directory.

Directives:

 • UserDir – The public subdirectory in users' home directories, or 'disabled',
or 'disabled username username...', or 'enabled username username...' to
govern the resources

2.3.3 Server-Management Modules
Modules in this category are good tools for providing information needed for
managing of the server.

mod_env
This module passes environment variables to scripts such as CGI or SSI. The
variables can be set or unset unconditionally or exported from the server’s
environment to the document’s environment for use.

Directives:

 • PassEnv – A list of environment variables to pass to CGI

 • SetEnv – An environment variable name and a value to pass to CGI

 • UnsetEnv – A list of variables to remove from the CGI environment

mod_info
This module provides a great deal of information about the server settings
and its environment. This module is not found in the IBM HTTP Server, but the
procedure to include it is found in 8.2, “The Apache Information Module
(mod_info)” on page 185.

Directives:
24 IBM HTTP Server Powered by Apache on RS/6000

 • AddModuleInfo – A module name and additional information on that
module to be displayed

mod_log_agent
This module logs the UserAgent header of the client. This enables the server
to know what software (mainly the browser) the client is using to send the
request.

Directives:

 • AgentLog – The filename of the agent log containing the UserAgent
header

mod_log_config
This module is much more flexible than the module above. Basically it
enables webmasters to log anything, anywhere. This implies any number of
log files can be used to keep track of any information pertaining to a specific
virtual host or the entire server.

Directives:

 • CustomLog – A file name and a custom log format string or format name
where log records are written

 • TransferLog – The filename of the access log based on definitions under
the LogFormat directive

 • LogFormat – A log format string and an optional format name that
customizes the format of the default log file

 • CookieLog – The filename of the cookie log for the logging of cookies

mod_log_referer
This module keeps track of the external URLs that are linked to the pages in
our server. This means that we are able to know where the client “jumped”
from and to which page in our server it is referred to.

Directives:

 • RefererLog – The filename of the referer log containing the source referer
header

 • RefererIgnore – Referer hostnames to be ignored in the referer log file

mod_status
This module provides statistics on the “health” of the server. Unlike mod_info
that provides information about the server configuration, this module shows
the current activities of the server.
The Building Blocks 25

Directives:

 • ExtendedStatus – “On” to enable extended status information,”Off” to
disable

mod_unique_id
This module allocates a unique magic number per request, which is assigned
to the environment variable UNIQUE_ID. The use of this magic number is
similar to the use of the process ID in the UNIX operating system for server
management purposes.

Directives: none

mod_usertrack
This module tracks the client’s movement or traversal in the document tree of
the Web server by using cookies.

Directives:

 • CookieExpires – An expiry date code for the cookie to expire

 • CookieTracking – Determines whether to enable cookies

2.3.4 Real-Time-Handling Modules
Modules in this category focus their attention on responding to the client’s
requests.

mod_actions
This module informs the server which CGI script to execute based on the
MIME type specified in the request.

Directives:

 • Action – A media type followed by a script name to be used for execution

 • Script – A method followed by a script name to be used for execution

mod_autoindex
This module provides a directory listings for the users. This directory listing
which contains information such as the directory and file sizes, is generated
either by an index file created or by the server itself.

Directives:

 • AddIcon – An icon URL followed by one or more filenames

 • AddIconByType – An icon URL followed by one or more MIME types
26 IBM HTTP Server Powered by Apache on RS/6000

 • AddIconByEncoding – An icon URL followed by one or more content
encodings

 • AddAlt – Alternate descriptive text followed by one or more filenames

 • AddAltByType – Alternate descriptive text followed by one or more MIME
types

 • AddAltByEncoding – Alternate descriptive text followed by one or more
content encodings

 • IndexOptions – One or more index options to set the indexing behavior

 • IndexIgnore – One or more file extensions to hide when listing directory

 • AddDescription – Descriptive text followed by one or more filenames

 • HeaderName – A filename to be listed on top of the index listing

 • ReadmeName – A filename to be appended to the end of the index listing

 • FancyIndexing – Limited to 'on' or 'off' (superseded by IndexOptions
FancyIndexing)

 • DefaultIcon – An icon URL to be displayed when no other icon is known

mod_cgi
This module deals with the creation of the environment variables that contain
information about the server and the clients to be passed on to the CGI
scripts for their necessary execution. Files with MIME type
application/x-httpd-cgi or handler cgi-script are executed as CGI scripts by
the server, which returns the corresponding results to the clients. There are
also other types of scripts such as perl, PHP and fastCGI that are supported
by the Apache server. Though the modules supporting them such as
mod_perl, mod_php and mod_fastcgi are not standard modules, the
implementation procedures are covered in Chapter 8, “Building HTTP Server
Modules” on page 177.

Directives:

 • ScriptLog – The name of a log for script debugging info

 • ScriptLogLength – The maximum length (in bytes) of the script debug log

 • ScriptLogBuffer – The maximum size (in bytes) to record of a POST
request

mod_imap
This module deals with image mapping of graphical image maps to Web page
locations. Besides supporting the traditional use of a CGI-program to do the
coordinates to document mapping, the Apache server offers this module to
The Building Blocks 27

perform the same task more efficiently without the need for a separate
process. In addition, the module also supports the use of client-side
processing where the relevant mapping information are returned to the
browser that is capable of highlighting the image regions containing links.
Thus, with this module, both server-side and client-side imagemaps, when
configured, can optimize the whole process of image mapping.

Directives:

 • ImapMenu – The type of menu generated: none, formatted,
semiformatted, unformatted

 • ImapDefault – The action taken if no match: error, nocontent, referer,
menu, URL

 • ImapBase – The base for all URLs: map, referer, URL (or start of)

mod_include
This module offers documents to be included within documents and handles
the parsing of server-parse documents with the server-parse handlers.

Directives:

 • XBitHack – Set Off, On, or Full to control the parsing of HTML documents

mod_speling
This module is not compiled by default, but it is a useful tool for the server to
perform spell check and corrections on the URL requested. Basically, it
compares all the document names in the requested directory against the
name of the requested document, fore-going case sensitivity and even
allowing up to one misspelling in the word, before returning the “giving-up”
error message back to the client.

Directives:

 • CheckSpelling – Determines whether to fix miscapitalized/misspelled
requests

2.3.5 Environment-Changing Modules
Throughout the client request parsing phases, modules communicate either
by changing the values of request itself or changing environment variable
values. The modules here are dedicated to the latter.

mod_setenvif
This module is used to change the environment variables such that other
parts of the server can decide how to react with what actions.
28 IBM HTTP Server Powered by Apache on RS/6000

Directives:

 • SetEnvIf – A header-name, regular expression and a list of variables
based on attributes of the request

 • SetEnvIfNoCase – A header-name, regular expression and a list of
variables which are not case-sensitive

 • BrowserMatch – A browser regular expression and a list of variables
based on UserAgent HTTP request header field

 • BrowserMatchNoCase – A browser regular expression and a list of
variables that are not case-sensitive

2.3.6 Protocol-Enhanced Modules
Modules in this category help the Apache server to extend its capability in
supporting optional features of the HTTP/1.1.

mod_asis
This module allows file types to be sent without using the HTTP headers, but,
rather, using their definition. This implies that all kinds of data can be sent
from the server without using CGI scripts.

Directives: none

mod_cern_meta
This module is incorporated to support the CERN Web server metafiles which
are HTTP headers other than the default HTTP headers output to the files.

Directives:

 • MetaFiles – Limited to on or off for Meta file processing

 • MetaDir – The name of the directory containing meta files

 • MetaSuffix – The filename suffix for meta files

mod_expires
This module is used to set the expiration time for the web document the client
requested using the Expires HTTP header, so that the client can assume the
validity of the document fetched from their local cache before the time
expires. This header can be set in two ways, either by the last-modified-time
or by the time of client’s access.

Directives:

 • ExpiresActive – Limited to on or off for generation of Expires header

 • ExpiresBytype – A MIME type followed by an expiry date code
The Building Blocks 29

 • ExpiresDefault – An expiry date code generation for all defined documents

mod_headers
This module provides modification of the HTTP response headers before
returning to the client. With this function, headers can basically be added,
removed or replaced.

Directives:

 • Header – An action, header and value for modifying, adding or removal

2.3.7 Dynamic-Linking Modules
Modules in this category help to build the server dynamically with the
modules.

mod_so
This module is used to load modules into the server at runtime.

Directives:

 • LoadModule – A module name and the name of a shared object file to load
it from

 • LoadFile – Shared object file or library to be loaded into the server at
runtime

2.4 WebSphere and Apache

When the use of Web browsers and servers became known to the general
public, many were overwhelmed by this new era of gathering information
through electronic means. Most Web servers began with housing HTML
pages, which was, at that time, sufficient to serve the enthusiastic Web user.
As the users began to grow, there was a need to provide information to
specific demands requested by the users. Webmasters were able to fulfill the
demand with the use and development of CGI programs with some
limitations. The on-going development and contribution in areas such as the
protocol and languages have made the Web a possible means for
commercial operations in today’s world. IBM offers the IBM WebSphere
Application Server as a tool for the commercial world to perform their operations
more efficiently in this the new era of Web technology. Figure 2 on page 31
shows a basic model of the IBM WebSphere Application Server to illustrate how
the Apache Server fits into the entire package.
30 IBM HTTP Server Powered by Apache on RS/6000

Figure 2. Basic WebSphere Architecture

The open standards adopted by the IBM WebSphere Application Server
include CORBA (Common Object Request Broker Architecture), JDBC (Java
Database Connectivity) and Java to allow developers to make full use of the
Java servlets, which replaced, if not improved, the performance of those
written as CGI scripts.

Basically, there are three main engines that deal with the entire operation.
They are the HTTP Engine, the Servlet Engine and the Enterprise Java Bean
Engine. The HTTP Engine sits on top of the operating system (with Java
capability) and is the layer that deals directly with the client’s requests from the
browsers. Most of the requests, such as HTML documents, CGI scripts, GIF
images, and so forth, are under the category Static Requests and are dealt with
by the HTTP engine. The WebSphere Application Server provides an Apache
module which lets the Apache server exploit the services provided by the
WebSphere Server. Since WebSphere can be used in a Netscape Web server
via NSAPI, or with Internet Information Server via ISAPI, the migration path from
other servers to Apache can be very smooth. Requests pertaining to Java Server
Pages (JSP) and servlets are also handled by the Servlet Engine. Last, but not
least, stands the Enterprise Java Beans (EJB) engine which is dedicated to

HTTP Engine

Enterprise Java Bean Engine

Servlet Engine

Static Requests Servlet Requests

WebSphere API

EJB Interface
The Building Blocks 31

ensuring the integrity of the transaction activities and the business logic of the
application. It communicates with the servlet engine via the EJB interface layer.

IBM is shipping the IBM HTTP Server with WebSphere Application Server
V2.0. WebSphere will also work with the original Apache Web server (among
other Web servers), but requires a different module than the IBM HTTP
Server.
32 IBM HTTP Server Powered by Apache on RS/6000

Chapter 3. Installation and Initial Setup

This chapter covers the installation of the IBM HTTP Server on an RS/6000
machine and the initial setup necessary to start it for the first time. First, the
contents of the IBM HTTP Server product file packages are listed, followed by
the hardware and software prerequisites that are required in order to run this
server. The installation, as explained later in this chapter, is an easy step and
it uses standard methods provided by the AIX operating system. The chapter
then describes some minimal setup that might be necessary to run the server,
and some hints are provided in the case the server does not start
successfully after installation.

3.1 Product Contents

The IBM HTTP Server is bundled with the IBM WebSphere Application Server
V2.0 and the install images can be found on the product CD-ROM. The IBM
HTTP Server can also be downloaded from the following URL:
http://www.software.ibm.com/webservers/appserv/download.html.

IBM employees can also download the IBM HTTP Server from the internal
URL http://w3.software.ibm.com/webservers/html/downloads.html.

The IBM HTTP Server comes in several file packages which contain the IBM
HTTP Server and SSL filesets as follows:

 • Base package, without SSL security:

 • http_server.base – Contains the IBM HTTP Server base and source
filesets

 • SSL module and SSL library packages (required for SSL):

 • http_server.modules – Contains the IBM HTTP Server SSL module
fileset

 • gskrf301 – Contains the gskrf301.base fileset, which are the base SSL
libraries for use in France and as a prerequisite for the other SSL
filesets

 • gskre301 – Contains the gskre301.base fileset, which contains
additional SSL libraries for export outside U.S. and Canada (excluding
France)

 • gskru301 – Contains the gskru301.base fileset, which contains the
additional, export-controlled SSL libraries for use in the Unites States
and Canada
© Copyright IBM Corp. 1999 33

Note that the gskrf301.base (for France) is an install prerequisite for either
of the other two SSL library filesets. Depending on product packaging
available in your country, you might not have all of the packages as listed
above available on the install media.

At the time of writing, packaging of the IBM HTTP Server was still subject
to change. You should check WebSphere installation media and/or the IBM
Web server Web site for latest information about packaging and availability
at http://www.software.ibm.com/webservers.

Note on Packaging
34 IBM HTTP Server Powered by Apache on RS/6000

The IBM HTTP Server includes most of the Apache standard modules (see
2.3, “Standard Modules in the Apache Server” on page 18). Table 6 shows
the modules that are included with the IBM HTTP Server.

Table 6. Standard Modules in the IBM HTTP Server Filesets

The standard Apache modules that are not listed in Table 6 (and thus not
included as loadable modules with the IBM HTTP Server) are:

 • mod_auth_db – This module performs basic authentication using
Berkley-type DB authentication files. The IBM HTTP Server supports DBM
files through the mod_auth_dbm module.

Fileset Included Modules (File Names)

http_server.base mod_access.so
mod_actions.so
mod_alias.so
mod_asis.so
mod_auth.so
mod_auth_anon.so
mod_auth_dbm.so
mod_autoindex.so
mod_cern_meta.so
mod_cgi.so
mod_digest.so
mod_dir.so
mod_env.so
mod_expires.so
mod_headers.so
mod_imap.so
mod_include.so
mod_log_agent.so
mod_log_config.so
mod_log_referer.so
mod_mime.so
mod_mime_magic.so
mod_negotiation.so
mod_rewrite.so
mod_setenvif.so
mod_speling.so
mod_status.so
mod_unique_id.so
mod_userdir.so
mod_usertrack.so

http_server.module mode_ibm_ssl.so
Installation and Initial Setup 35

 • mod_so – This module is necessary for dynamic loading of other
modules. This module is already linked into the core httpd executable and
thus not available as a separate module.

 • mod_example – This module is not available as a compiled module, but it
is included in source code as a sample for custom module development.

 • mod_info – This module is not included because it may create a security
exposure in a Web server.

 • mod_proxy – This module is not included because it does not (yet)
support the HTTP/1.1 protocol and, at the time of product release, did not
meet the high quality level of Apache in terms of stability.

The file name extension used for compiled modules is .so, which stands for
shared object. More information on using and customizing some of these
modules can be found in Chapter 5, “Advanced Configuration” on page 71.

3.2 Updates to the IBM HTTP Server

As was mentioned earlier, the IBM HTTP Server is built from open source
code available and supported by the Apache Group. Although IBM is not
primarily responsible for this code, customers using the IBM HTTP Server
should report any problems using the established IBM support channels. The
IBM support team will then forward any problem reports (along with any
suggested fixes) to the Apache Group to have them implemented in the core
code. For the latest information on support, product refreshes, or upgrades to
the IBM HTTP Server, customers should visit the following Web site:

http://www.software.ibm.com/webservers

Alternatively, customers may contact their IBM representatives or look at the
newsgroup ibm.software.websphere.http-servers at news.software.ibm.com.

3.3 Installation Prerequisites and Considerations

There are a few checks that should be done before the IBM HTTP Server is
installed on an RS/6000 machine.

Note: This description only applies to the installation of the IBM HTTP
Server. If you install it together with the IBM WebSphere Application Server
V2.0, please also check the prerequisites for that product.
36 IBM HTTP Server Powered by Apache on RS/6000

Hardware and Software Requirements
The IBM HTTP Server running on RS/6000 requires the following hardware
and software for successful installation and operation:

 • Any IBM RS/6000 capable of running IBM AIX Version 4.2.1 or higher

 • A configured TCP/IP stack is required for running the IBM HTTP Server

 • Although not required, a graphic console with mouse is recommended for
easy testing and troubleshooting

The requirements listed above are minimal. In fact, the IBM HTTP Server will
run in a very limited environment. However, if you plan to run a
high-performance, large-scale Web server, you will certainly have to have
more CPU, memory and disk resources available. Additional information on
performance and scalability can be found in Chapter 7, “Performance and
Scalability” on page 153.

DIsk Space Considerations
A full installation of the IBM HTTP Server on RS/6000 requires less than
25 MB in the /usr filesystem. Please bear in mind that this covers the base
installation only and does not include any user files. In a practical
environment, disk space requirements will almost certainly grow as HTML
files, image graphics, and applications are added. Also, log files on a
production Web server with heavy access can grow quickly, requiring
additional disk space.

3.4 Default File and Directory Structure

The IBM HTTP Server is installed in a default directory structure that slightly
deviates from the original Apache distribution code to meet some minimal
standards in the AIX directory file tree. It should be noted at this point that the
original Apache Web server is strictly platform-independent and therefore
requires some adaptation to fit individual operating systems’ standards.

All files of the IBM HTTP Server are installed underneath the
/usr/lpp/HTTPServer directory. This includes the executable binaries, log
files, online documentation, and others. There is a Readme.httpserver file in
/usr/lpp/HTTPServer that you should consult after installation of the IBM
HTTP Server or any updates to it.

Following is a list with a short description of the directories beneath
/usr/lpp/HTTPServer:

 • /usr/lpp/HTTPServer/apachesrc – Contains a single file, apache_tar.gz,
which is a tar-ed and gzipped collection of the original source files from
Installation and Initial Setup 37

the Apache Group from which the IBM HTTP Server was built. Note that
this is not identical with the actual source code from which the IBM HTTP
Server (with the SSL additions) is built.

 • /usr/lpp/HTTPServer/bin – Holds the three executables: dbmmanage,
htdigest, and htpasswd. See 6.2.3, “Authentication Files and Databases”
on page 124 for more information.

 • /usr/lpp/HTTPServer/sbin – Stores the main httpd executable, the control
program apachectl, along with some other executables.

 • /usr/lpp/HTTPServer/example_module – Contains the source code and
related files for the sample module mod_example, as shipped with the
original Apache distribution. See Chapter 8, “Building HTTP Server
Modules” on page 177 for more information on how modules can be
compiled and included in the IBM HTTP Server.

 • /usr/lpp/HTTPServer/include – Contains the header files for the IBM
HTTP Server. These files are available for your reference, or when new
modules need to be compiled (see Chapter 8, “Building HTTP Server
Modules” on page 177).

 • /usr/lpp/HTTPServer/etc – Contains the main configuration file
(httpd.conf and httpd.conf.default), the mime-type definition file
(mime.types and mime.types.default), and the definition file for
mod_mime_magic (magic.default). Depending on your installation, a
sample configuration file for SSL (httpd.conf.sample.ssl) may be included
as well.

 • /usr/lpp/HTTPServer/share – Contains the following subdirectories:

 • cgi-bin – Is the default directory for CGI programs, containing two
sample CGI scripts.

 • htdocs – Contains the online HTML documentation.

 • icons – Contains a collection of public domain GIF images that the IBM
HTTP Server uses for various purposes. The README file in this
directory explains the suggested use of some of these images.

 • /usr/lpp/HTTPServer/man – Contains the Apache man pages for the
executables. To be able to read them with the UNIX man command, enter
the command:

export MANPATH=$MANPATH:/usr/lpp/HTTPServer/man

You might find them handy as references for the commands. However, you
might also find and even prefer similar information in the online or public
Apache documentation.

 • /usr/lpp/HTTPServer/var – Contains the following subdirectories:
38 IBM HTTP Server Powered by Apache on RS/6000

 • log – For the log files, which are the error_log and access_log files

 • proxy – Not used by the IBM HTTP Server

 • run – For some run-time control files

 • /usr/lpp/HTTPServer/libexec – Contains the loadable modules as listed
in Table 6 on page 35.

 • /usr/lpp/HTTPServer/ssl – Contains the IKEYMAN application for
certificate creation and handling, if installed (see 6.4.5, “Creating a
Self-Signed Certificate” on page 136 for more information).

In 4.1, “Recommended Directory Structure” on page 49, a slightly modified
directory structure will be introduced that might be better suited towards a
production-oriented installation.

3.5 Installing the IBM HTTP Server

This section describes the installation of the IBM HTTP Server on an IBM
RS/6000 machine. In contrast to the standard Apache distribution, the IBM
HTTP Server is shipped as an AIX installp image that can easily be installed
using SMIT (System Management Interface Tool).

3.5.1 Pre-Installation Setup
Before starting with the IBM HTTP Server installation process, you should
ensure that the following is in place:

 • You should have the install packages available. See 3.1, “Product
Contents” on page 33 for more information on which packages you need.
Depending on your source, these can be available as separate files or on
a product CD-ROM.

 • You must have root authority on the system on which the IBM HTTP
Server is to be installed.

 • You should have the minimum hardware and software requirements
available as listed in 3.3, “Installation Prerequisites and Considerations”
on page 36.

 • You should determine which filesets you need to install. The following
matrix (Table 7) provides you with the names and descriptions of the
respective filesets. Select the column on the right that applies to your
environment and then select the fileset(s) applicable for that installation
listed on the left. The fileset description in the first column of Table 7 are
the ones that SMIT lists when installing the product. Note that the filesets
Installation and Initial Setup 39

are contained in file packages as listed in 3.1, “Product Contents” on page
33.

Table 7. Fileset Installation Matrix

The installation is fairly easy and straight forward, but if you are unfamiliar
with the standard product installation process or with the SMIT tool on AIX,
you might want to refer to the AIX Installation Guide, SC23-4112, before you
start with the installation.

3.5.2 Installing Using SMIT
The following description guides you through the installation of the IBM HTTP
Server using the SMIT tool:

1. Log on as root on the system where the IBM HTTP Server is to be
installed.

2. Ensure that you have the IBM HTTP Server file packages accessible from
your system. Depending on your environment, they might be available on
a CD-ROM, on a remotely mounted directory, or as separate files.

3. Run SMIT with the install_latest fastpath:

smit install_latest

(If you do not want the graphical version of SMIT, run smitty instead. The
following description and figure refer to this non-graphical version.)

Fileset Description
(Fileset Name)

Base
HTTP
Server

Base Server & SSL Security Source
Code

France Export U.S. &
Canada

IBM HTTP Server
(http_server.base.core)

✔ ✔ ✔ ✔

IBM HTTP Server source files
(http_server.base.source)

✔

IBM HTTP Server SSL Module
(http_server.modules.ssl)

✔ ✔ ✔

gskrf301 for AIX
(gskrf301.base)

✔ ✔ ✔

gskre301 for AIX
(gskre301.base)

✔

gskru301 for AIX
(gskru301.base)

✔

40 IBM HTTP Server Powered by Apache on RS/6000

4. Enter the directory name or the device name where the package files are
available (or select the available devices from the list shown with PF4) and
press Enter.

5. From the Install and Update LATEST Available Software menu, press PF4
for SOFTWARE to install in order to show the list of available filesets in
that directory (or on the selected media).

6. From the SOFTWARE to install list, select the filesets that you want to
install (with PF7) and press Enter when you have finished the selection.
Refer to Table 7 on page 40 for selecting the correct fileset(s).

7. Review the other installation options on that SMIT panel and adjust as
required. Then, press Enter to start the installation.

8. After successful installation, an OK indication will be displayed in the top
left corner as shown in Figure 3 on page 41.

Figure 3. SMIT Screen after Successful Installation

This completes the basic installation of the IBM HTTP Server. You can find
the default directory structure and files as explained in 3.4, “Default File and
Directory Structure” on page 37 in place.

 COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.

[TOP]
installp -acgNQqwX -d /inst.images/apache -f File 2>&1

File:
 gskrf301.base 3.0.1.30
 gskre301.base 3.0.1.30
 http_server.base.core 1.3.3.0
 http_server.base.source 1.3.3.0
 http_server.modules.ssl 1.3.3.0

+---+
 Pre-installation Verification...
+---+
Verifying selections...done
Verifying requisites...done
[MORE...66]

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit /=Find
n=Find Next
Installation and Initial Setup 41

The installed filesets can be displayed and verified with the lslpp command
from the command line:

lslpp -l http_server.*
 Fileset Level State Description
--
Path: /usr/lib/objrepos
 http_server.base.core 1.3.3.0 COMMITTED IBM HTTP Server
 http_server.base.source 1.3.3.0 COMMITTED IBM HTTP Server source files
 http_server.modules.ssl 1.3.3.0 COMMITTED IBM HTTP Server SSL Module

lslpp -l gskr*
 Fileset Level State Description
--
Path: /usr/lib/objrepos
 gskrf301.base 3.0.1.30 COMMITTED gskrf301 for AIX
 gskre301.base 3.0.1.30 COMMITTED gskre301 for AIX

Note: The version numbers and fileset descriptions shown above were
correct at the time this book was written. They may be different at a later
date.

3.6 Initial Setup

After the IBM HTTP Server has been installed successfully, there are a few
steps to be done (or at least considered) before the server can be run. These
are:

 • Creating a user and group under which the IBM HTTP Server will run

 • Adapting the server configuration file to your environment

First of all, for security reasons, a Web server should never be run with root
authority; it should only be run as a user application under a user that has
limited privileges in the operating system. To make things a bit more
confusing, however, a Web server must start with root authority in order to
have sufficient privileges to open port 80 (the default HTTP protocol port).

The solution to this is that the IBM HTTP Server runs a main process under
root, which then in turn spawns child processes that change their user
identity to whatever user and group are configured in the server’s
configuration file. (There are actually more reasons for spawning multiple
processes; this is only one of them.) By default, these child processes run
under the user and group nobody. Since nobody is an anonymous user, not
only used for a Web server, you may consider creating a separate user and
group for the IBM HTTP Server to run under. This way, you can keep better
42 IBM HTTP Server Powered by Apache on RS/6000

separation of your Web server from other tasks running on the same
machine. This user and group can be called whatever you decide; for
example, www as user and group names.

As a further security precaution, this user does not need to have a login
password and login should be disabled, thus preventing the user account
from being misused, intentionally or unintentionally.

After you have decided on and created a separate user and group, you must
edit the server configuration file to reflect these changes. The default
configuration file that you need to edit for the IBM HTTP Server is
/usr/lpp/HTTPServer/etc/httpd.conf. Locate the directives User and Group
and change their default settings from nobody to the user and group name
that you have created.

There could, of course, be a number of changes done to that configuration file
at this time, but none of them are actually required before the IBM HTTP
Server can be fired up for the first time. The remainder of this book explains
this configuration file and possible changes in more details.

3.7 Server Process Structure

Before moving on and starting the IBM HTTP Server for the first time, it might
be worthwhile to look at some particulars about this server from a system
point of view.

The IBM HTTP Server runs, as mentioned in the previous section, as a main
process and one or more child processes. The main process runs with root
authority, while the child processes run under a different user authority. These
child processes, not the main process, do the actual Web serving work. This
architecture allows for better performance and parallelization of client
requests. The number of child processes is automatically adapted to the
server’s load; the minimum and maximum number can be configured in the
configuration file (along with some other numbers). By default, there is a
minimum of five child processes and a maximum of 150.

Once the server is running, these processes can be seen by running the ps
command:

ps -ef | grep httpd
 www 27024 27454 0 13:50:54 - 0:00 /usr/lpp/HTTPServer/sbin/httpd
 www 27160 27454 0 13:50:56 - 0:00 /usr/lpp/HTTPServer/sbin/httpd
 root 27454 1 0 13:50:52 - 0:00 /usr/lpp/HTTPServer/sbin/httpd
 www 27658 27454 0 13:50:53 - 0:00 /usr/lpp/HTTPServer/sbin/httpd
 www 28132 27454 0 13:50:53 - 0:00 /usr/lpp/HTTPServer/sbin/httpd
Installation and Initial Setup 43

 www 28388 27454 0 13:50:55 - 0:00 /usr/lpp/HTTPServer/sbin/httpd
 www 29002 27454 0 13:50:55 - 0:00 /usr/lpp/HTTPServer/sbin/httpd

The main httpd process supervises the child processes. If, for any reason, a
child process terminates, the main process evaluates to start a new one,
depending on certain criteria, like server load and configuration parameters.
Each child process has a counter for the client requests it has served. After
reaching a certain maximum (the default is 10000000), it terminates to allow
a new process to be started. This is a designed, yet elegant way to
circumvent any problems that usually exist in long-living processes, such as
memory leaks. At the time of writing, there was some work in progress to on a
module that dynamically adapts the maximum number of requests per child
process as opposed to the currently fixed number.

3.8 Running the IBM HTTP Server for the First Time

After you have completed the minimal server customization as described in
3.6, “Initial Setup” on page 42, the server is ready to be started. Although this
is certainly not the final configuration in which the server will eventually run, it
is a good idea at this time to check whether the basic server installation and
the other involved operating system components work well.

To start the IBM HTTP Server, follow these steps:

1. Login as root.

2. On a command line, change to the /usr/lpp/HTTPServer/sbin directory.

3. Run the following command (and observe the output):

./apachectl start
./apachectl start: httpd started

(More about the apachectl command can be found in the following section
3.8.1, “The apachectl Utility” on page 45.)

You will most likely receive the positive output as shown in the last step
above, indicating that the httpd process (actually the IBM HTTP Server) was
successfully started. You may also check this with the ps command as shown
in the previous Section 3.7, “Server Process Structure” on page 43.

If there was a problem, the chance is that there is some additional error
message returned along with the message “httpd could not be started”.
Another, even better place to check for errors is the error log file at
/usr/lpp/HTTPServer/var/log/error_log. The most common errors that cause
starting the IBM HTTP Server to fail are either a lack of permissions (not
being root) or some sort of resource problem, such as a full filesystem.
44 IBM HTTP Server Powered by Apache on RS/6000

After the IBM HTTP Server has successfully been started, you should be able
to connect to it from a Web browser. Just enter the URL of the newly installed
Web server and you should get the IBM HTTP Server’s welcome page as
shown in Figure 4 on page 45.

Figure 4. IBM HTTP Server Welcome Screen

Note that the default configuration of the IBM HTTP Server is such that this
welcome screen is shown when no other specific page is requested in the
URL (in the example shown in Figure 4:
http://my_test.itso.austin.ibm.com/).

3.8.1 The apachectl Utility
As was already mentioned in the previous section, apachectl is a utility to
start and stop the IBM HTTP Server. The apachectl utility offers more
functions that are briefly described here.
Installation and Initial Setup 45

The syntax for apachectl is:

apachectl [start|stop|restart|graceful|configtest|status|fullstatus|help]

The command line options are:

start Starts the IBM HTTP Server. If it was already running, an error is
returned.

stop Stops the IBM HTTP Server. An error message will be shown if
the server was not running upon invocation.

restart Immediately restarts (or starts if not already running) the IBM
HTTP Server. The server’s child processes are stopped
immediately and new processes are created, causing open
connections to break.

graceful Gracefully restarts (or starts if not already running) the IBM HTTP
Server. This is usually run after a configuration change has been
made in order for the server to reread the configuration file. Open
requests will be processed first before the processes get
restarted.

configtest Reads the server configuration file and indicates whether or not
there is a syntax error. This is helpful as a first step after changing
the configuration file.

status Displays a current short status of the server. In order to work,
mod_status must be configured and lynx must be installed (see
note below).

fullstatus Displays a comprehensive current status of the server. In order to
work, mod_status must be configured and lynx must be installed
(see note below).

help Displays a brief help message about the apachectl command.
46 IBM HTTP Server Powered by Apache on RS/6000

You should note that the apachectl is a shell script that assumes the default
directory and file structure. If you change these defaults, for example, to
adapt to the directory structure explained in 4.1, “Recommended Directory
Structure” on page 49, you might have to adapt this shell script in order for it
to work properly.

3.9 Uninstalling the IBM HTTP Server

Should you later on decide to uninstall the IBM HTTP Server, the AIX
software maintenance tools come in handy. Type:

smit remove

(or smitty remove for the text-based version of SMIT) on the command line to
get to the SMIT Remove Installed Software panel. Use the PF4 key to display
a list of installed software, from which you should select (PF7) the filesets
(http_server.* and, if applicable, gsk*) to remove.

Bear in mind that this only removes the standard files that were installed with
the IBM HTTP Server. If you changed the directory structure or added links to
the executables (for example as explained in 4.1, “Recommended Directory

mod_status is a module that comes with the IBM HTTP Server. It can be
enabled through the configuration file (by default it is disabled) and allows
you to query the server about its configuration and status using a Web
browser through a normal URL.

lynx is a text-based Web browser that is not available with AIX or the IBM
HTTP Server. It can be downloaded, however, from various Web sites,
such as http://www-frec.bull.com/.

Because mod_status exposes internal information about a Web server,
most webmasters prefer not to configure and use it.

mod_status and lynx?

At the time this book was written, there were some discussions going on in
the Apache Group about renaming the httpd daemon and the apachectl
utility. Because of this, you should not be surprised to see new names in a
future release.

New Times, New Names
Installation and Initial Setup 47

Structure” on page 49), such changes cannot be removed by this process and
must be removed manually.

As always, when removing installed software from a system, exercise
extreme care to select the correct filesets that you want to remove.
Selecting the wrong filesets permanently removes those components from
your system.

A Word of Caution
48 IBM HTTP Server Powered by Apache on RS/6000

Chapter 4. Basic Configuration

After you have successfully installed the IBM HTTP Server on your system in
a way that it starts with a minimum setup, there are some additional basic
configuration steps that can or need to be done to further meet your needs.
Configuration of the IBM HTTP Server is done by means of a configuration
file, introduced in the previous chapter, that the server reads when it is being
started or restarted. This chapter lists and explains the most common
directives used in the configuration file that will be used in most IBM HTTP
Server installations. But, before the configuration file is examined, a
recommended directory structure is introduced in the first section that you
might find more suitable than the default as explained in 3.4, “Default File and
Directory Structure” on page 37. Furthermore, a more comfortable way of
automatically starting and stopping is described in this chapter.

4.1 Recommended Directory Structure

While the IBM HTTP Server will certainly run perfectly in the default directory
structure as explained in the last section, there are two major considerations
that you should take into account when setting up a production Web server.
These are:

 • There should not be any variable-size files, such as log files, in the /usr
filesystem. The /usr filesystem should normally only contain static program
and configuration files.

Thus, the main recommendation is therefore be to move the log (and
similar) files from /usr/lpp/HTTPServer/var to a filesystem that is
commonly used for this purpose, such as /var.

 • The Web documents that a Web server serves, such as HTML documents,
graphic images and CGI scripts, are normally stored in a separate file
system other than the /usr filesystem.

The configuration file shipped with the IBM HTTP Server contains directives
that specify the location of a number of files and directories. (Note that in an
actual installation there can be more than just one configuration file.)
Because of this, whenever such a file or directory is moved to another
location, the respective directive in the configuration file(s) must be changed
as well and the server must be restarted in order to recognize those changes.

Table 8 on page 50 lists and explains the directives in the server configuration
file(s) that relate to other files and directories. Also listed are their default and
recommended settings. As you can see, the main purpose of this
© Copyright IBM Corp. 1999 49

recommendation is to move the files contained in /usr/lpp/HTTPServer/var to
the /var filesystem.

Table 8. Default and Recommended Directory Structure

Notes:

 • General – The /var filesystem was chosen for the above
recommendations because it is the commonly used place for log files. Be
careful, however, since log files can grow and may even use all available
space in /var, preventing other services from functioning properly (or
vice-versa). You might instead choose to create a separate filesystem for
the log files to completely uncouple them from other services running on
the same machine.

 • Shared File Systems – It is recommended to store the log, lock, and error
files on a local filesystem rather than on a remote filesystem.

 • PidFile – The apachectl utility (see 3.8.1, “The apachectl Utility” on page
45) is a UNIX shell script that uses the PidFile. You must also adapt (edit)

Directive Description, Settings

ServerRoot Used as a directory prefix for all other directory or file directives that are
not specified with their full path names. This directive is normally not
important as most Web administrators choose to specify full directory
names for all other files to avoid any confusion.
Default Setting: /usr/lpp/HTTPServer
Recommended: /usr/lpp/HTTPServer (no change)

ErrorLog The server’s error log file.
Default Setting: /usr/lpp/HTTPServer/var/log/error_log
Recommended: /var/httpd/log/error_log

CustomLog The server’s access log file.
Default Setting: /usr/lpp/HTTPServer/var/log/access_log
Recommended: /var/httpd/log/access_log

PidFile A file that contains the process ID (PID) of the main server process.
Please read the note below concerning the PidFile directive.
Default Setting: /usr/lpp/HTTPServer/var/run/httpd.pid
Recommended: /var/httpd/httpd.pid

ScoreBoardFile File for temporary storage of server-internal data. This file is not used
by the IBM HTTP Server on AIX.

LockFile Lock file for server-internal use. It is important that this file is not on a
shared filesystem, such as in an NFS-mounted directory.
Default Setting: /usr/lpp/HTTPServer/var/run/httpd.lock
Recommended: /var/httpd/httpd.lock

DocumentRoot Specifies the root directory for files served by this server.
Default Setting: /usr/lpp/HTTPServer/share/htdocs
Recommended: (see notes below)
50 IBM HTTP Server Powered by Apache on RS/6000

a single line in that script when you change the location of the pid file,
otherwise the apachectl utility does not work correctly any more.

 • Internal Defaults – The IBM HTTP Server uses default settings for all files
mentioned in Table 8 on page 50, even if they are not specified or
commented out in the server configuration file (such as the LockFile is).
You can see the internal settings by running the command httpd -V. Notice
that these internal settings are relative to ServerRoot.

 • Multiple HTTP Servers – Bear in mind that there may be multiple error
log, access log, PID, and lock files, depending on the server’s
configuration. You might then want to further separate them in separate
subdirectories, for example /var/httpd/<server name>/log.

 • DocumentRoot – This is potentially a large storage area for all Web
pages, images and programs that your Web server serves. It is therefore
recommended that you create at least a separate filesystem, for example
/www/htdocs, for this purpose. If you have multiple HTTP servers, you
may choose to further separate them, for example, by using directories
like /www/<server name>/htdocs.

 • Binaries – Unlike other applications, the IBM HTTP Server does not copy
or link its executables to a directory that is included in the default $PATH
environment variable, such as /bin or /sbin. You may consider adding links
like the following:

ln -s /usr/lpp/HTTPServer/bin/dbmmanage /usr/bin/dbmmanage
ln -s /usr/lpp/HTTPServer/bin/htdigest /usr/bin/htdigest
ln -s /usr/lpp/HTTPServer/bin/htpasswd /usr/bin/htpasswd
ln -s /usr/lpp/HTTPServer/sbin/ab /usr/sbin/ab
ln -s /usr/lpp/HTTPServer/sbin/apachectl /usr/sbin/apachectl
ln -s /usr/lpp/HTTPServer/sbin/apxs /usr/sbin/apxs
ln -s /usr/lpp/HTTPServer/sbin/httpd /usr/sbin/httpd
ln -s /usr/lpp/HTTPServer/sbin/logresolve /usr/sbin/logresolve
ln -s /usr/lpp/HTTPServer/sbin/rotatelogs /usr/sbin/rotatelogs
ln -s /usr/lpp/HTTPServer/sbin/sidd /usr/sbin/sidd

4.2 Starting and Stopping the HTTP Server

In Section 3.8, “Running the IBM HTTP Server for the First Time” on page 44,
the manual way of starting and stopping the HTTP Server using the apachectl
command was described. In practice, most administrators like to have a
process in place that automatically starts the HTTP Server whenever the
system boots up. Also, provisions should be implemented for a clean
shutdown of the HTTP Server when a system is being shut down.
Basic Configuration 51

The following two sections describe methods for implementing such
automatic startup and shutdown processes.

4.2.1 Automatic Startup
In AIX, automatic startup of services is done by the init process. At boot time,
the init process reads the /etc/inittab file and executes the commands it
contains. The /etc/inittab file is not a shell script; it contains a series of
commands (with optional comments) in a textual form that follow a specific
syntax required for the init process. Care must be taken when editing this file
with a text editor. If the init process comes across an error in /etc/inittab, the
boot process might not complete successfully. If the init process encounters
errors in some critical commands in /etc/inittab, you might have to boot the
system in maintenance mode in order to correct the file. For this reason, our
example uses the mkitab command to add a command to the /etc/inittab file,
which lessens the chance for errors.

Follow these steps to make the HTTP Server start up automatically when the
system boots up:

1. Login as root user to the system where the HTTP Server will be started
automatically.

2. Create a simple startup shell script /etc/rc.httpd for starting the IBM HTTP
Server, such as:

#!/usr/bin/ksh
Configures the Automatic Startup of the IBM HTTP Server
This file should be owned by root:system and have permissions 0774

BINPATH=/usr/lpp/HTTPServer/sbin

if [[‘/bin/id -u‘ != 0]]; then
echo "Error: you must be root to execute this command" >&2
exit 1

fi

echo "Starting IBM HTTP Server..."
$BINPATH/apachectl start

Note: The name for this file (/etc/rc.httpd) is not important and can be any
valid file name, but this example follows common rules.

3. Change the ownership and permissions for the file:

chown root.system /etc/rc.httpd
chmod 0774 /etc/rc.httpd
52 IBM HTTP Server Powered by Apache on RS/6000

This changes the ownership to user root and group system, and makes
the file executable for either the owner or any member of the system
group.

4. Create an entry in /etc/inittab for automatic execution of the startup file:

mkitab "httpd:2:once:/etc/rc.httpd >/dev/console 2>&1 # IBM HTTP
Server startup"

(Note that this is a single line.)

The last step adds the /etc/rc.httpd command as the very last entry to the
/etc/inittab file. In other words, the HTTP Server will only be started when all
other services have already been started. Note that the mkitab command has
options that allow you to add the /etc/rc.httpd command at any specific
place in /etc/inittab, should you choose to have the HTTP Server started
before certain other services are started.

If the Web server does not start successfully, the logfiles are a good place to
start looking for the cause. One common problem with SSL that hinders the
automatic startup of the Web server is when the password for the key
database is not stored (stashed) in a file. In this case, the server startup
hangs when it tries to ask for the key database password (see 6.4, “Secure
Sockets Layer, SSL” on page 129 for more information).

4.2.2 Automatic Shutdown
Technically speaking (neglecting any operational and application-related
issues), stopping a Web server is not a crucial issue. A Web server is
basically just a program that delivers files from the disk to the network.
Unless complex applications are involved, it does not have online databases
that might end up in an inconsistent state when the system is shut down
without properly stopping the IBM HTTP Server. However, it is a good idea to
explicitly stop the IBM HTTP Server when shutting down the system.

Like other UNIX operating systems, AIX provides an option to run a shell
script when the system is being shut down. When AIX is being shut down, it
checks for the existence of the file /etc/rc.shutdown (note that the correct file
name is relevant, and it must be executable). If such a file is found, it will be
executed early in the shutdown process. If your system does not already have
an /etc/rc.shutdown file, you should create it. Otherwise, append the relevant
statements to it. Below is an example of an /etc/rc.shutdown file that shuts the
IBM HTTP Server down.

#!/usr/bin/ksh
BINPATH=/usr/lpp/HTTPServer/sbin
Basic Configuration 53

echo "Shutting down the IBM HTTP Server..."
$BINPATH/apachectl stop
exit 0

Note that the apachectl command, called in the example above, is written in a
way that it will return even if the IBM HTTP Server is not running or, even
worse, not responding to any commands. In the shutdown script you should
not run commands that might hang, or, for example, wait for some input from
a user. More information on the apachectl command can be found in 3.8.1,
“The apachectl Utility” on page 45.

4.2.3 Restarting the HTTP Server
The IBM HTTP Server allows an administrator to change the configuration file(s)
and apply those changes to the running server without the requirement to shut
the server down and then restart it again. This does not cause any noticeable
interruptions for a user. To restart the HTTP Server, or, more correctly, to reread
the configuration file, use the apachectl command:

/usr/lpp/HTTPServer/sbin/apachectl graceful

More information about the apachectl command can be found in 3.8.1, “The
apachectl Utility” on page 45.

4.3 Customizing the Configuration File

This section gives you more guidance on configuring a standalone IBM HTTP
Server after it has been installed according to the previous chapter.

If /etc/rc.shutdown does not terminate successfully, that is if it returns a
non-zero return code, the system shutdown process stops. For this reason,
the /etc/rc.shutdown script should always exit with return code zero (exit 0),
unless there is a strong reason for not doing so.

Note

The IBM HTTP Server can be run in two modes: standalone and inetd. In
the inetd mode, the server only gets started when an HTTP request is
received. The inetd mode is not recommended and, therefore, not further
explained in this book.

Standalone or inetd?
54 IBM HTTP Server Powered by Apache on RS/6000

Customizing the IBM HTTP Server is done by editing its configuration file(s)
with a text editor. There can be more than one such configuration file, but by
default there is only one, the httpd.conf, located in /usr/lpp/HTTPServer/etc.
The IBM HTTP Server reads its configuration parameters from this
configuration file when it starts up or when it is being restarted.

The configuration file (http.conf) contains the related directives such as how
the server runs, the user and group ID definition that the server used to run
as, where the log files are to be written to, the port it listens to, the location of
other files, and so on.

The IBM HTTP Server supports a large number of directives in its
configuration file and each module that is added to the server may add a few
or many additional directives to it. It is beyond the scope of this book to list
and explain them all (since the online documentation contains a description of
them all). What follows is an explanation of the most often used directives
that are likely to be required for a basic server setup. More directives will be
discussed in subsequent chapters.

Port specifies the port number that server listens on. The default port number
is 80 for Web servers. Note: If the port number is 1023 or below, the IBM
HTTP Server must be started as root. If any other port than 80 is used, it
must be specified in the URL for that server. For example, if port 8080 is to be
used instead, the corresponding lines in httpd.conf are:

Port 8080
Listen 8080

An example of an URL for that non-standard port at www.CompanyA.com
could be http://www.CompanyA.com:8080/home.html.

ServerType specifies whether the server runs as a standalone daemon or
whether it will be started by inetd on demand. Running the IBM HTTP Server
as an inetd process is not recommended, thus, the directive in httpd.conf
should look like:

ServerType standalone

User defines the user ID (or UID) under which the server will run. Although
the server will be started as root in most cases, the actual HTTP request
servers run under a different user ID for security and other reasons. The user
nobody is the default value, but it is recommended to create a special user for
the server (see 3.6, “Initial Setup” on page 42). The corresponding directive
in httpd.conf for a user ID www would look like:

User www
Basic Configuration 55

If the server is started by someone other than root, this parameter is ignored.

Group is similar to the User directive explained above. It specifies the group
the HTTP server processes should run under. An example is:

Group www

ServerAdmin specifies an e-mail address that may be used in error messages
(see 5.5.1, “Customizing Error Messages” on page 92). For example:

ServerAdmin webadmin@CompanA.com

ServerRoot specifies the absolute directory that serves as a root directory for
other files specified by their respective directives that do not contain an
absolute filename, such as the error and access log files. However, it is
recommended to use fully qualified filenames in all other directives that
involve files because relative filenames may easily be confusing. The default
is:

ServerRoot /usr/lpp/HTTPServer

ErrorLog specifies the filename for the error log file. The default is:

ErrorLog /usr/lpp/HTTPServer/var/log/error_log

You might want to change this according to 4.1, “Recommended Directory
Structure” on page 49.

ServerName is how the IBM HTTP Server identifies itself in error messages
that are sent to client after an error occurred. It should specify the server’s
hostname that can be resolved to an IP address. Example:

ServerName www.CompanyA.com

DocumentRoot is used to translate the document portion of a URL into the
actual directory and file tree. All references given in a URL are relative to this
directory on the server. For example, if all your Web pages are beneath
/www/html, the directive would be:

DocumentRoot /www/html

The URL http://www.CompanyA.com/index.html would then request the file
/www/html/index.html.

4.4 Enabling DSO Modules

At the beginning of the default configuration file, there is a list of LoadModule
directives, a ClearModuleList and another list of AddModule directives. The
56 IBM HTTP Server Powered by Apache on RS/6000

LoadModule directives add dynamic shared object (DSO) modules to the
server that enhance the functionality of the core server (see also 2.2.1, “The
DSO Concept” on page 14). Each DSO module that is to be used must be
enabled with a LoadModule directive. An example would be:

LoadModule auth_module libexec/mod_auth.so

The first parameter of the LoadModule directive specifies the module’s
internal name as it was specified by the programmer of the module. The
second parameter specifies the filename of the module, either absolute, or
relative to the directory specified with the ServerRoot directive.

The ClearModuleList directive that follows clears the list of modules that is
already compiled into the server by default (as with most configuration
options, the server comes with a compiled-in default module list that applies if
no other definitions are done in the configuration file).

The list of AddModule directives that follows enables the modules. Bear in
mind that the order might be important for a certain function to work properly.
You should consult the documentation of the respective module for more
information on the order.

4.5 Online Documentation

Documentation about the IBM HTTP Server is available online. After you have
installed and started the Web server, the default home page (pointing to
/usr/lpp/HTTPServer/share/htdocs) contains links to the respective
documentation pages.

The original Apache Web server documentation is also available in
/usr/lpp/HTTPServer/share/htdocs/manual or at http://www.apache.org/docs.

4.6 The Configuration File

The IBM HTTP Server configuration file /usr/lpp/HTTPServer/etc/httpd.conf is
a plain text file. There is no standard graphical configuration tool available
with the current version of the server, but you can find interesting work to
develop such tools at http://gui.apache.org. A graphical management tool
can be expected for the IBM HTTP Server in a future version.

For historical reasons (as descendant of the NCSA httpd server), Apache
(and thus the IBM HTTP Server) supports three configuration files: httpd.conf,
access.conf and srm.conf. The NCSA httpd server used each of these files
for different configuration directives. In the current release of Apache (IBM
Basic Configuration 57

HTTP Server) all configuration is merged into one file, the httpd.conf
configuration file. Other files, though still supported, should only be used
when specific reasons require this.

Each line in the configuration file is either a comment or a configuration
directive. Empty lines are ignored. Comment lines start with the pound
symbol (#). They are disregarded, just like empty lines.

Every directive line starts with the directive’s name, followed by optional or
mandatory parameters for that directive. Each directive must end on the
same line; it is not allowed to continue directive across multiple lines. A
parameter must be separated from the directive and other parameters by at
least a space or tabulation symbol.

For readability reasons it is recomended to indent directives inside a section
(see also 4.8, “Sections” on page 61). The following example shows the use
of such indentation:

<Location /confidential>
AuthName "Authorized Staff Only"
AuthType Basic
AuthUserFile /www/security/users.pwd
<Limit GET>

Order deny,allow
Deny from all
Allow from 1.2.3
require valid-user
Satisfy all

</Limit>
</Location>

Directives are not case sensitive. You can mix uppercase and lowercase
letters in them. Some parameters, however, are case sensitive, particularly
file and directory names. Case sensitivity of URLs can be removed by using
the spell checking feature of the IBM HTTP Server as explained in 5.9.1,
“Fixing Typos in URLs” on page 106.

4.7 Distributed Configuration

A single configuration file (httpd.conf) is the preferred method for better
centralized system management and security concerns. In some situations,
however, distributed configuration may be required. The IBM HTTP Server
allows the user to solve this situation by using .htaccess files for local
configuration settings in some directories.
58 IBM HTTP Server Powered by Apache on RS/6000

A .htaccess file placed in a particular directory applies to that directory and all
its subdirectories. It is equivalent to a <Directory> section (see 4.8, “Sections”
on page 61) in the httpd.conf file.

For example, assuming there is a .htaccess file in the /www/html directory
with the following contents:

Order Deny,Allow
Deny from All
Allow from 1.2.3

That would be equivalent to the following section in the httpd.conf file:

<Directory /www/html>
Order Deny,Allow
Deny from All
Allow from 1.2.3

</Directory>

4.7.1 .htaccess and Performance
The use of .htaccess files has its own advantages and disadvantages. They
are read and processed on each client request to a directory, so any
configuration change applies immediately. The server does not need to be
restarted as is the case after a change of the httpd.conf file. The drawback of
using the .htaccess file is its negative impact on server performance because
of the increased disk I/O operations. When the use of the .htaccess file is
enabled (see directive AllowOverride in 4.7.2, “Restricting the Directives
within .htaccess Files” on page 60), the Web server also checks all parent
directories for any .htaccess files and merges their configuration.

For example, assuming the httpd.conf file contains the following section:

You may be thinking that the purpose of .htaccess files is access control as
file name implies. That is only partially true. They were invented for that
purpose and still can be used for that. They can actually contain most of
configuration directives that are used in the httpd.conf file, so they are
more of a distributed configuration tool.

The file name .htaccess is only a default configuration setting. It can be
changed with the AccessFileName directive. For example, it can be set to
wwwacl with the following directive:

AccessFileName wwwacl

 File Name of .htaccess
Basic Configuration 59

<Directory /www/html/public/support>
AllowOverride All
...

</Directory

Whenever a document from within that directory is requested, the Web server
looks for the following files:

/.htaccess
/www/.htaccess
/www/html/.htaccess
/www/html/public/.htaccess
/www/html/public/support/.htaccess

If any of these files exist, the Web server reads and applies their contents to
the currently effective configuration, which affects server performance. Thus,
for performance reasons, it is recomended to use .htaccess files only when
really required. More about configuration processing can be found in 4.8.4,
“Sections Processing Rules” on page 64.

The server’s default for AllowOverride is All for all directories if it is not
specified at all. The IBM HTTP Server therefore contains the following
directive in its default configuration file to prevent the server from searching
for such files:

<Directory />
AllowOverride None

...
</Directory>

4.7.2 Restricting the Directives within .htaccess Files
The use of .htaccess files may raise some security concerns. In environments
where not only (trusted) webmasters administer the contents of the document
directories, it is desirable to disable the use of some directives in the
.htaccess file. If disabled, such directives cannot override corresponding
directives in higher directories. This can be done with the AllowOverride
directive with one or more appropriate parameters in the main configuration
file (httpd.conf).

The AllowOverride directive supports the following parameters:

All Every configuration directive that can be used in .htaccess files
is allowed to be used.

AuthConfig Only authentication control directives (such as AuthType and
AuthUserFile) are processed in .htaccess files.
60 IBM HTTP Server Powered by Apache on RS/6000

FileInfo Only document controlling directives (such as ErrorDocument
and AddHandler) are processed.

Indexes Only directory index controlling directives (such as
FancyIndexing and AddDescription) are processed.

Limit Only access control directives (allow, deny and order) are
processed.

Options Option directives are processed (see also 4.10, “Options” on
page 67). This is the most dangerous parameter because it
allows the user to enable Server Side Includes, CGI programs,
automatic directory indexes and the MultiView feature. Every of
these features may expose some security risks.

None The use of .htaccess files is disabled entirely. The Web server
does not look for any .htaccess files at all.

For best performance (and security) it is recomended to use:

AllowOverride None

If you need to use the .htaccess file, it is recommended to specify the
following in the main configuration file:

AllowOverride AuthConfig Limit

Note: The AllowOverride directive cannot be used within .htaccess files.

The .htaccess files can contain confidential information (for example the path
and filenames of authentication files). It is possible to restrict access to these
files from Web clients using the following section in the main configuration file
or .htaccess files themselves:

<Files .htaccess>
Order allow,deny
Deny from all

</Files>

4.8 Sections

The IBM HTTP Server has very flexible features to define configuration
parameters for individual URLs, directories and even single files. This can be
done by placing configuration directives into special sections (sometimes also
called containers or scopes) of the configuration file.
Basic Configuration 61

Sections can contain most of the supported configuration directives, including
some other sections. If in doubt, consult the online documentation for a
particular directive to find out whether or not it can be included in a section.

This section explains the three basic section types: <Directory>, <Files>, and
<Location>. A configuration file can also contain other sections, such as
<DirectoryMatch>, <LocationMatch> and <FilesMatch>, which are used for
regular expression matching. The sections <IfModule> and <IfDefine> are
used for conditional processing of directives. More about the <VirtualHost>
section can be found in 5.1, “Virtual Hosts” on page 71 and about the <Limit>
section in 5.6, “File Uploading” on page 95.

Configuration options are accumulated through sections. The ones in the
most precise scope overwrite the previously defined ones.

4.8.1 <Directory>
The <Directory> section is the most commonly used sort of section. It
contains configuration directives that apply to a specific directory and its
subdirectories. The directory can be specified by an absolute path, by any
string with wild-card characters (“?” for single character and “*” for any
sequence of characters) or by a regular expression. For security reasons and
for simplicity, it is recomended to always use absolute path names.

For example, the following section found in the default IBM HTTP Server
configuration file defines the configuration for the whole AIX filesystem
(although not all of it will be accessible by clients):

<Directory />
Options FollowSymLinks
AllowOverride None

</Directory>

It enables symbolic links (see 4.9, “Request Mapping” on page 66), but
disables automatic directory indexes (see 5.2, “Automatic Directory Indexing”
on page 80), server side includes (see 10.4, “Server-Side Includes” on page
219) and MultiViews (see 5.4, “Multiple Language Support” on page 87). The
above example also disables the use of .htaccess files (see 4.7.1, “.htaccess
and Performance” on page 59).

The following example can also be found in the default configuration file
shipped with the IBM HTTP Server:

<Directory /usr/lpp/HTTPServer/share/htdocs>
Options Indexes FollowSymLinks
AllowOverride None
62 IBM HTTP Server Powered by Apache on RS/6000

Order allow,deny
Allow from All

</Directory>

It overwrites the previous configuration for the root directory (see previous
example) for the /usr/lpp/HTTPServer/share/htdocs directory and its
subdirectories.

The <Directory> section cannot be used within .htaccess files.

4.8.2 <Files>
The <Files> section in the server configuration file is very similar to the
<Directory> section. The difference is that the <Files> section settings apply
to files according to file name match. You can also use wild-cards (like “?” for
single character and “*” for any sequence of characters) or regular
expressions in the file names.

<Files> sections can be included in <Directory> sections. In this case, it
applies only to files in that particular directory and its subdirectories.

For example, the following configuration file fragment forbids access to all
.htaccess files beneath /www/html:

<Directory /www/html>
AllowOverride All
<Files .htaccess>

Order Allow,Deny
Deny from All

</Files>
</Directory>

Other than the <Directory> and <Location> directives, the <Files> section
can also be used in .htaccess files.

4.8.3 <Location>
The <Location> section does not apply to directories and/or files, but to
requested URLs. For example, the following section allows access to URLs
/internal (and below) only from the IP network 1.2.3.*:

<Location /internal>
Order Deny,Allow
Deny from All
Allow from 1.2.3

</Location>
Basic Configuration 63

Although similar, the <Location> section has nothing in common with the
directory structure. The <Location> directive has no effect if the same
directory structure can be accessed through another URL. The following
example shows such case:

DocumentRoot /www/html

<Location /internal>
Order Deny,Allow
Deny from All
Allow from 1.2.3

</Location>

Alias /int /www/html/internal

Files in the /www/html/internal directory can be accessed from any IP
address through URL /int. More about the Alias directive can be found in 4.9,
“Request Mapping” on page 66.

The <Location> section cannot be used within .htaccess files.

4.8.4 Sections Processing Rules
Configuration directives can appear in the main part of the configuration file,
within sections and within .htaccess files. The question arises regarding how
that all works together. Here, we define some rules that helps you understand
main principles.

Priority – There is a defined priority of each place where configuration
directives can appear. Directives with higher priority overwrite ones with
lower priority.

Directives found in the main section of the configuration file httpd.conf have
the lowest priority. They are overwritten by directives found in <Directory>
sections, followed by those in .htaccess files. Directives within <Files>
sections and finally within <Location> sections have the highest priority.

In the following example, the directives within the <Location> section
overwrite the directives within the <Directory> section:

DocumentRoot /www/html

<Directory /www/html/internal>
Order Deny,Allow
Deny from All
Allow from 1.2.3

</Directory>
64 IBM HTTP Server Powered by Apache on RS/6000

<Location /internal>
Order Deny,Allow
Allow from All

</Location

Inheritance – All configuration parameters are inherited by descendants. That
applies to both subdirectories and sub-URLs. For example:

 • The section <Directory /www/html> applies also to all subdirectories of
/www/html.

 • The directives in /www/html/.htaccess apply also to all subdirectories of
directory /www/html.

 • Directives in the <Location /internal> section apply to all URLs that begin
with string /internal after the host name.

Level – Directives in lower subdirectories overwrite the same directives in
higher level subdirectories. For example:

 • The directives in section <Directory /www/html/internal> overwrite the
same directives in section <Directory /www/html>.

 • The directives in /www/html/internal/.htaccess overwrite the same
directives in file /www/html/.htaccess.

Order – Sections are processed according to their order in the configuration
file. If multiple directives apply to the same object on the same level, the
directives in the last section overwrite the same directives in previous
sections.

For example, in the following configuration, the second section overwrites the
first one:

<Directory /www/html/internal>
Order Deny,Allow
Deny from All
Allow from 1.2.3

</Directory>

<Directory /www/html/int*>
Order Deny,Allow
Allow from All

</Directory>

Inclusion – Any directives within a <Files> section that is inside a <Directory>
section will be processed only if the <Directory> section matches the request.
The same is applicable to sections inside of <VirtualHost> section.
Basic Configuration 65

4.8.5 Recommendations on Sections Usage
Using nested sections and additional configuration directives can create
some confusion on how they are actually processed by the server. For this
reason, we suggest a few simple rules to keep your configuration more clear
(at least for yourself).

 • Do not use <Location> sections at all (unless truly necessary). Almost
everything can be done with <Directory> sections.

 • Use <Files> sections only when you really need them. In most cases, a
solution can be found by putting all these files into a separate directory
and using a <Directory> section.

 • Use .htaccess files only when you need to have distributed administration
and configuration (see 4.7, “Distributed Configuration” on page 58). Avoid
using several .htaccess files in one directory path (for example,
/www/.htaccess and /www/html/.htaccess).

 • Keep the number of sections in the configuration file at minimum.
Sometimes rearrangement of the directory structure helps.

Additional information on this topic can be found at
http://www.apache.org/docs/sections.html.

4.9 Request Mapping

The base task of a Web server is to respond with HTML documents (or some
other type of file) to clients’ requests. This section explains the basic
directives that apply to the mapping between URLs and the physical
filesystem of the Web server. More about dynamic response generation can
be found in Chapter 10, “Web Applications” on page 213.

The basic directive that maps a URL to the filesystem of the Web sever is the
DocumentRoot directive. For example, the directive

DocumentRoot /www/html

This instructs the Web server to insert the directory /www/html in front of all
requested resources in URLs. To continue with this example, when the Web
server www.CompanyA.com gets a request with the URL
http://www.CompanyA.com/images/products.gif, it looks for the file
/www/html/images/products.gif. This requires that all files are stored
underneath one directory (except, of course, when using symbolic links within
the filesystem).
66 IBM HTTP Server Powered by Apache on RS/6000

Sometimes it is necessary to access files from other directory trees. There
are two common ways to do that. First, it is possible to create a symbolic link
to another directory. Since this operation might raise some security concerns,
the IBM HTTP Server supports the Options FollowSymLinks directive that
controls the use of symbolic links. More about the Options directive can be
found in 4.10, “Options” on page 67.

Another way to use the other directory tree is the Alias directive. This
directive is implemented by the standard module mod_alias. For example, the
following directive maps all requests that begin with /download to the
directory tree /ftp/pub/download:

Alias /download /ftp/pub/download

The IBM HTTP Server also has a possibility to tell a client to look for the
requested resource in another location. This feature is useful when a
document has been moved to a different location or server. The Redirect
directive that is used for such cases is also implemented by the mod_alias
module.

Here is an example. A configuration file contains the following directive:

Redirect /support http://support.CompanyA.com

Assuming a client requests http://www.CompanyA.com/support/index.html, it will
be told to request the document with another URL, which in this case would
be http://support.CompanyA.com/index.html.

More information about the Alias and Redirect directives can be found in the
online documentation.

4.10 Options

The Options directive is used to enable some advanced features of the IBM
HTTP Server. Many of these features are explained in other sections in this
book in the context or their respective meaning. Here we briefly overview
each option and provide references to more detailed descriptions. Then, the
syntax of this directive and its usage in configuration files is explained.

The Options directive can have the following parameters:

None No additional features are enabled. Best case in
terms of security.
Basic Configuration 67

Indexes Automatic directory indexing is enabled. See 5.2,
“Automatic Directory Indexing” on page 80 for
more details.

Includes Server side includes (SSI) are enabled. See 10.4,
“Server-Side Includes” on page 219 for more
details.

IncludesNOEXEC SSIs are enabled, but program execution inside
SSIs is disabled. See 10.4, “Server-Side Includes”
on page 219 for more details.

MultiViews The automatic multiple variants feature is enabled.
See 5.4, “Multiple Language Support” on page 87
for more details.

ExecCGI CGI program execution is enabled. See 10.2, “CGI
Programs” on page 214 for more details.

FollowSymLinks AIX file system symbolic link support is enabled;
the server follows symbolic links. See 4.9,
“Request Mapping” on page 66 for more details.

SymLinksIfOwnerMatch Acts similar to the previous parameter, but with
additional restrictions. See online documentation
for more details.

All This option is equivalent to:
directive Options Indexes Includes ExecCGI

FollowSymLinks

Please notice that MultiViews not included.

4.10.1 Syntax
The parameters after the Options directive can have the prefixes + or -.
These prefixes indicate that the result should be accumulated with other
Options directives. That applies to directives within single sections (such as
<Directory>) and directives from other sections or .htaccess files. For more
about directives processing, see Section 4.8.4, “Sections Processing Rules”
on page 64.

In the following example, the effective options in the directory
/www/html/demo are FollowSymLinks and IncludesNOEXEC.

<Directory /www/html>
Options FollowSymLinks Indexes

</Directory>

<Directory /www/html/demo>
68 IBM HTTP Server Powered by Apache on RS/6000

Options -Indexes +IncludesNOEXEC
</Directory>

Any option without a + or - prefix resets all previously set options. For
example, the following sequence of directives

Options +Includes
Options Indexes
Options +MultiViews

is equivalent to the single directive

Options Indexes MultiViews

because the second line (Option Indexes) without any prefix also resets the
previous Option Includes.
Basic Configuration 69

70 IBM HTTP Server Powered by Apache on RS/6000

Chapter 5. Advanced Configuration

Chapter 4, “Basic Configuration” on page 49 covered some basic features of
the IBM HTTP Server that every Web server manager (webmaster) should be
familiar with. The IBM HTTP Server has a number of other attractive functions
that can be useful in most Web environments.

This chapter explains the most commonly used, advanced features of the IBM
HTTP Server and provides some examples on how to use and customize
them. It would be beyond the scope of this book to describe all features of the
IBM HTTP Server since some of them are seldom used and the list of
available functions is almost endless, given the number of generally available
modules. For additional information on advanced features, including
seldom-used functions that are not described here, we refer you to the online
IBM HTTP Server documentation, which is shipped with the product, or to the
Apache documentation at http:www.apache.org.

The IBM HTTP Server ships with most of the commonly available modules.
Should you require to add other modules that are not shipped with the
product, you should also read Chapter 8, “Building HTTP Server Modules” on
page 177.

5.1 Virtual Hosts

A virtual host appears to be a host of its own, although it is not actually a
separate physical machine. The term virtual host in the context of a Web
server means that a single physical machine may appear to a client as if
there were multiple Web servers.

The following is a typical use: Some companies provide content hosting
services for other companies, which are their customers. Such customers
would like to appear on the Internet as if they had their own servers for their
Web site, thus appearing with their own, unique URL. This is possible using
the virtual hosts feature of the IBM HTTP Server.

It ought to be mentioned once again that the IBM HTTP Server is actually
identical to the corresponding release of the Apache server as far as
configuration is concerned. The only major differences are the installation
process (adapted to IBM AIX) and IBM’s addition of the SSL protocol, that
cannot be found in the original Apache server.

IBM HTTP Server versus Apache
© Copyright IBM Corp. 1999 71

5.1.1 Concepts
Let’s look at an example first: Two companies, CompanyA and CompanyB,
would like to establish presence on the Internet with their own URLs:
http://www.CompanyA.com and http://www.CompanyB.com. Both companies, for
some reason or another, do not want to build up and maintain their own Web
servers. Thus, both companies may ask an Internet Service Provider (ISP) to
host and publish their Web pages on their behalf. ISPs usually have Web
servers that are powerful enough to handle multiple customers’ needs, but
they need to set them up such that it looks like several different servers. Each
of these servers is then called a virtual host because they are actually
running on the same physical computer.

5.1.2 IP-Based and Name-Based Virtual Hosts
There are two different kinds of virtual hosts: IP-based virtual hosts and
name-based virtual hosts. The difference is in the usage of IP addresses and
DNS names. Name-based virtual hosts are not supported by HTTP protocol
version 1.0 and therefore require both server and client (browser) to support
the HTTP/1.1 protocol. However, some clients that do not support the
HTTP/1.1 standard actually do support this virtual host feature.

Each IP-based virtual host must have its own IP address (see Figure 5 on
page 73). Usually the computer running the virtual hosts has multiple IP
addresses assigned to a single network interface adapter if the operating
system supports this (or it might optionally have multiple adapters). IP-based
virtual hosts provide a transparent solution to any browser; the function does
not rely on any specific browser functionality and therefore tends to be the
preferred method for many sites that implement virtual hosts.

From the browser’s view, there is no difference between a virtual host and a
real host; both have their own hostname (as included in the URL) and
associated IP address.

An Internet Service Provider (ISP) is a company that has a permanent
connection to the Internet and sells Internet related services for their
customers: Internet access, e-mail, Web hosting and other.

What is an Internet Service Provider?
72 IBM HTTP Server Powered by Apache on RS/6000

The key to handling IP-based virtual hosts is the server’s ability to handle
multiple IP addresses, be it on one single network interface or on multiple
interfaces. The Web server software, on the other hand, needs to be able to
distinguish and handle separate requests accordingly.

Figure 5. IP-Based Virtual Hosts

Since IP addresses are becoming a short Internet resource, name-based
virtual hosts were introduced. All name-based virtual hosts on a single

The terms server, Web server, and host are often used interchangeably for
the same meaning; a physical machine with adequate software that
responds to HTTP-type requests. While host is normally only used for a
physical machine, it is used in the context of this section with a broader
meaning, describing a (virtual) machine including all software that makes
up a full Web (HTTP) server.

Host versus Web Server

Virtual Host
Name: www.CompanyA.com
Address: 1.2.3.4

Real Host
Names: www.CompanyA.com

www.CompanyB.com
Addresses: 1.2.3.4

1.2.3.5

Virtual Host
Name: www.CompanyB.com
Address: 1.2.3.5

HTTP request by IP address

Client with Web Browser
Advanced Configuration 73

physical Web server have the same IP address, but are distinguished by the
server name in the HTTP protocol header that the browsers sends to the
server (see Figure 6). Name-based virtual hosts rely on the HTTP Version 1.1
protocol implementation which may not be supported by older browsers.

Figure 6. Name-Based Virtual Hosts

The key in name-based virtual hosts is that the clients’ requests, which are
being routed to the same physical interface with the same IP address, carry
the hostnames in their headers such that the Web server software can
distinguish them. This feature was only introduced with HTTP Version 1.1
protocol, which must be supported by both the server and the browser.

The IBM HTTP Server supports both IP-based and name-based virtual hosts
on the same computer. The next sections explain how these can be set up.

5.1.3 Setting It Up
Setup for IP-based and name-based virtual hosts have much in common, so
we do not separate them, but explain the differences in each step.

Virtual Host
Name: www.CompanyA.com
Address: 1.2.3.4

Real Host
Names: www.CompanyA.com

www.CompanyB.com
Address: 1.2.3.4

Virtual Host
Name: www.CompanyB.com
Address: 1.2.3.4

Client with Web Browser

HTTP Request Includes Server Name

(with HTTP/1.1 Support)
74 IBM HTTP Server Powered by Apache on RS/6000

Setting up virtual hosts on the IBM HTTP Server involves the following tasks:

 • TCP/IP and DNS setup

 • IBM HTTP Server configuration

 • Testing the new environment

The sections that follow discuss each of these tasks.

5.1.3.1 TCP/IP and DNS Setup
Setting up basic operations of TCP/IP and DNS on IBM RS/6000 machines is
beyond the scope of this book; we will only cover additional configuration
steps required for setting up virtual hosts. You should refer to standard
operating system manuals and other publications listed in the Appendix B,
“Related Publications” on page 227 if you need more information on this.

As we have seen, each IP-based virtual host must have its own IP address.
Multiple IP addresses can be added to a system by either installing multiple
network adapters or by assigning multiple IP addresses to a single network
interface. To assign an additional IP address to an existing and configured
network interface on AIX, use the command ifconfig with the alias option.
The following example shows how to assign an additional IP address (1.2.3.4
with network mask 255.255.255.240) to the Ethernet interface en0:

ifconfig en0 1.2.3.4 netmask 255.255.255.240 alias

For a more detailed description of network interfaces and the ifconfig
command, refer to the AIX documentation.

For each name-based virtual host, you must have a DNS record (alias, also
known as canonical name, CNAME) pointing to the same IP address. Such
configuration is usually done by a DNS administrator on a different computer
that serves as a DNS server, and the details depends on the individual DNS
setup.

Either way, for IP-based and name-based virtual hosts, you should check that
the newly introduced hostnames correctly resolve into the assigned IP
addresses. This can easily be done, for example, with the host <hostname>,
ping <hostname>, or nslookup <hostname> commands on AIX.

5.1.3.2 IBM HTTP Server Configuration
The IBM HTTP Server has virtual hosts functionality built into its core, so no
additional modules are required. Each virtual host must have its own
<VirtualHost> section in the configuration file. The syntax of this section is:

<VirtualHost Name_or_Address[:Port] ...>
Advanced Configuration 75

...
</VirtualHost>

Name_or_Address is the fully qualified DNS name or IP address of the virtual
host being defined. It is preferable to specify the IP address with this directive
for performance and availability reasons because the server does not need to
do DNS lookups to find its associated IP address. Port is an optional field; it
only needs to be included if a non-standard port (which is 80) is to be used for
this virtual host.

You can use most of the IBM HTTP Server directives inside the <VirtualHost>
section, but some of them are highly recommended:

 • DocumentRoot – This directive should be here because that is most likely
the reason for using a virtual host to serve a separate document tree
under another server name.

 • ServerName – This directive is useful for performance and availability
reasons because, when used, the server does not need to do a DNS
lookup to find its name. It is not needed, however, when the server’s name
is specified in the <VirtualHost> directive (see above).

 • TransferLog and ErrorLog – These directives specify separate log files for
such a virtual server. For details, see 5.7, “Logging” on page 97.

 • ServerAdmin – Specify different e-mail address for each virtual host. This
e-mail address can be automatically appended to error messages in order
to give users some help in case of errors. See 5.5.1, “Customizing Error
Messages” on page 92 for more information on using e-mail addresses in
error messages.

A recommended minimal <VirtualHost> section of an IP-based virtual host
could look like:

<VirtualHost 1.2.3.4>
ServerName www.CompanyA.com
ServerAdmin webmaster@CompanyA.com
DocumentRoot /www/html/CompanyA
ErrorLog /www/logs/CompanyA/error_log
TransferLog /www/logs/CompanyA/access_log

</VirtualHost>

If you decide to use name-based virtual hosts, you must use the
NameVirtualHost directive (outside of the <VirtualHost> section). This
directive specifies the IP address which will be used for name-based virtual
hosts. In this case, a corresponding section of a configuration file could look
like:
76 IBM HTTP Server Powered by Apache on RS/6000

NameVirtualHost 1.2.3.4
...
<VirtualHost 1.2.3.4>

ServerName www.CompanyA.com
DocumentRoot /www/html/CompanyA
...

</VirtualHost>
...
<VirtualHost 1.2.3.4>

ServerName www.CompanyB.com
DocumentRoot /www/html/CompanyB
...

</VirtualHost>

Do not forget to grant appropriate access rights for document directories with
appropriate <Directory> directives. More about directory access rights and
related directives can be found in 6.2, “Basic Authentication” on page 118.

Name-based virtual hosts have some additional configuration options. If it is
necessary to access the same virtual host by more than one name, additional
names can be listed with the ServerAlias directive. An example might be that
you would like to access the name-based virtual host
support.CompanyA.com also with the short name supp. In this case, you can
define an additional <VirtualHost> section or add a ServerAlias directive to a
<VirtualHost> section as shown in the following example:

NameVirtualHost 1.2.3.4
...
<VirtualHost 1.2.3.4>

ServerName support.CompanyA.com
ServerAlias supp
DocumentRoot /www/html/CompanyA
...

</VirtualHost>

It should be pointed out regarding the example above that it is required that
the server aliases only work as long as the hostname supp resolves into the
IP address 1.2.3.4.

5.1.4 Testing
After changing the server configuration file as shown, it is recommended that
you verify the configuration file syntax with the apachectl configtest or the
httpd -t command. If there are errors, the commands will notify you
immediately. If the commands reports “Syntax OK”, you can restart the server
Advanced Configuration 77

with command apachectl graceful in order to read and apply the new
configuration to the running server.

After successful restart of the server, try to access the new virtual servers
from a browser. Make sure that the Web server provides the correct pages for
each virtual host. If problems arise with name-based virtual hosts, it may be
caused by the browser if it does not fully support the HTTP/1.1 protocol
standard. If you suspect such a problem, try a newer version or another
product. Most current Web browsers support HTTP/1.1, but not all.

5.1.5 Logging
If you have virtual hosts set up, you would possibly like to have separate log
files for each of them. The IBM HTTP Server allows you do this by using the
TransferLog and ErrorLog directives in the <VirtualHost> section. If you do
not specify these directives, the server writes all log records into a single log
file specified in the main section of the configuration file. (However, there are
tools available on the Internet that allow you to split single log file into several
log files, along with other functionality to analyze log files.)

More about logging can be found in 5.7, “Logging” on page 97.

5.1.6 Compatibility with Older Browsers
There is some compatibility workaround for name-based virtual hosts support
by Web browsers not supporting HTTP/1.1. It uses the IBM HTTP Server
directive ServerPath and module mod_rewrite.

When a client request does not include a server name, the IBM HTTP Server
uses the first <VirtualHost> section that matches the IP address. It is
therefore recommended to create a special <VirtualHost> section as the first
that always returns a list of all available virtual hosts with references to the
separate subdirectories of each virtual host (see example shown in Figure 7,
where an old version of Microsoft Internet Explorer was used that did not
support the HTTP/1.1 protocol). It is then the user’s choice to select the
correct page.

The module mod_rewrite is actually very powerful and supports functions
far beyond the single use that will be explained. For more information
about this module, refer to 2.3.2, “Translation Modules” on page 21 or the
original Apache documentation.

Note on mod_rewrite
78 IBM HTTP Server Powered by Apache on RS/6000

Figure 7. Error Page for Compatibility on Old Browsers

The following example shows how to set up a configuration file for
compatibility with old Web browsers:

...
NameVirtualHost 1.2.3.4

<VirtualHost 1.2.3.4>
DocumentRoot /www/html
RewriteEngine On
RewriteRule ^/.* /www/html/index.html

</VirtualHost>

<VirtualHost 1.2.3.4>
DocumentRoot /www/html/CompanyA
ServerName www.CompanyA.com
ServerPath /com_a
...

</VirtualHost>

<VirtualHost 1.2.3.4>
DocumentRoot /www/html/CompanyB
ServerName www.CompanyB.com
ServerPath /com_b
...
Advanced Configuration 79

</VirtualHost>

5.2 Automatic Directory Indexing

It is quite common in HTML requests not to request a single file but rather a
directory. Most Web servers in such case search for some default files in the
specified directory. The IBM HTTP Server, by default, looks for and returns
the file index.html (which can be changed with the DirectoryIndex directive) if
it is present in that directory. If that default file cannot be found, the IBM HTTP
Server can built a directory index automatically. A directory index is just a
single formatted list of files in that directory, annotated with some links and
icons (if configured). This feature is implemented with the standard module
mod_autoindex.

The main advantage of an automatic directory index is that it requires almost
no effort to keep it up to date. On the other hand, an automatically created
directory index may not be as flexible as an index file and not as intuitive to
user. Automatic directory indexes are useful for big or frequently changing
directories, or, for example, simple collections of files, such as picture
images. They are also widely used for downloadable files listings.

5.2.1 Simple and Fancy Indexes
Automatic directory indexing can be enabled using the directive Options
Indexes. By default, it returns a simple file and directory listing, as shown in
Figure 8 on page 81.

In order to make everything work, use either relative references between
documents belonging to the same virtual host (for example ../img/logo.gif),
or include the full corresponding subdirectories (for example
/com_a/img/logo.gif). Do not use absolute references (like /img/logo.gif),
because in that case the server will return the virtual hosts list again.

Important Note
80 IBM HTTP Server Powered by Apache on RS/6000

Figure 8. Example of a Default Automatic Directory Index

The directive IndexOptions FancyIndexing can improve the look of an
automatically created directory index by adding more information about file
types and directories, as shown in Figure 9.

Figure 9. Example of a Fancy Automatic Directory Index
Advanced Configuration 81

Here is an excerpt of a possible configuration file that specifies fancy
indexing:

<Directory /www/html/demo>
Options Indexes
IndexOptions FancyIndexing
...

</Directory>

5.2.2 Adding Text to an Index
The module mod_autoindex provides many ways to customize the
appearance of an index. One of the most powerful features is the ability to
add some information in front of the index listing and after it. This information
can clarify the contents of the directory being listed (see Figure 10).

Figure 10. Directory Index with Additional Text

Adding text to an index can be done by using the directives HeaderName and
ReadmeName. They specify names of files that are to be included into the
generated HTML document representing the index. These files can be plain
text files or HTML fragments. For example, the directive ReadmeName
82 IBM HTTP Server Powered by Apache on RS/6000

README instructs the IBM HTTP Server to append the contents of a file
named REAME.html or README to the end of the directory index. Usually
files specified by HeaderName and ReadmeName directives cannot have
<HTML>, <HEAD> and <BODY> tags since they are only part of an HTML
document. However, the directive IndexOptions SuppressHTMLPreamble
allows the use of HTML headers in the file specified by the directive
HeaderName. In this case, the server does not automatically generate an
HTML header.

5.2.3 Excluding Files from an Index
Another useful directive, IndexIgnore, specifies files that should be excluded
from an index. First candidates in that list are HEADER and README files
mentioned in the previous section, and .htaccess files used for access control
in that directory. Wildcard expressions can also be used. For example, the
following directive excludes the parent directory (..) and GIF files from the
index listing of directory /www/html/samples:

<Directory /www/html/samples>
IndexIgnore .. *.gif
...

</Directory>

Right after installation, the IBM HTTP Server’s configuration file includes the
following directive in its main section:

IndexIgnore .??* *~ *# HEADER* README* RCS

This default directive excludes the following files from all indexes:

 • Files whose names begins with dot and are longer than two characters
(that means that the parent directory is not excluded)

 • Files whose names end with either the tilde (~) or the pound (#) character

 • Files whose names begin with HEADER and README (usually appended
to directory index)

 • File with the name RCS (Revision Control System)

5.2.4 Additional Customization
Additional directory index customization can be done using the IndexOptions
directive. For example, the following directive allows only icons and file
names in the directory listing (thus excluding modification date, size and
description):

IndexOptions SuppressLastModified SuppressSize SuppressDescription
Advanced Configuration 83

The directive IndexOptions ScanHTMLTitles instructs the server to display
HTML document title information in the description field. Note that this can
seriously impact server performance because all HTML documents in a
directory need to be scanned on each request. A much more lightweight
method for adding descriptions to files is through the use of the directive
AddDescription. The following example shows how to use this directive:

AddDescription "Network diagram" /www/images/diag.gif

It can be used in the main configuration file, but a much more convenient
place to use it is the local .htaccess file in that directory.

The options in the IndexOptions directive can have the prefixes + or -.
These prefixes indicate that the result should be accumulated with previous
IndexOptions directives. That applies to options within single section (like
<Directory>) and are inherited from higher-level sections. For more about
directives processing in sections, see 4.8.4, “Sections Processing Rules”
on page 64.

In the following example, the effective options in the
/www/html/demo/images directory are SuppressLastModified and
SuppressDescription.

<Directory /www/html/demo>
IndexOptions SuppressLastModified SuppressSize

</Directory>

<Directory /www/html/demo/images>
IndexOptions -SuppressSize +SuppressDescription

</Directory>

Any option without prefix + or - resets all previously set options. For
example, the following sequence of directives:

IndexOptions +SuppressDescription
IndexOptions SuppressSize
IndexOptions +SuppressLastModified

is equivalent to the single directive:

IndexOptions SuppressSize SuppressLastModified

because option SuppressSize without prefix also resets the previous
option SuppressDescription.

Syntax of IndexOptions
84 IBM HTTP Server Powered by Apache on RS/6000

The following example shows how to combine automatic directory indexing
directives:

<Directory /www/html/download>
Options Indexes
IndexOptions FancyIndexing
IndexOptions +ScanHTMLTitles
IndexIgnore .??* HEADER* README*
HeaderName HEADER
ReadmeName README
AddDescription "Compressed file" *.zip

</Directory>

5.2.5 Security Considerations
Enabling automatic directory indexing has some security aspects. They can
expose directory structure and file names that you otherwise might want to
hide. If automatic directory indexing is enabled for some directories, file
listings will be shown for other directories in case the index file is deleted or
renamed accidentally. It is therefore recommended to disable automatic
directory listings for all directories except for those you really want to show as
file listing. To disable directory indexes for all directories, add the directive
Options -Indexes to the root directory section (<Directory />) in the server
configuration file.

5.3 User Directories

Some organizations let their employees (or students in case of universities)
publish their own Web pages through their main Web server. Users simply put
their files into some predefined subdirectory in their home directories.

The IBM HTTP Server supports this feature with the module mod_userdir.
This module is by default included in the appropriate LoadModule and
AddModule section of the httpd.conf file, thus no action is required to enable
them. The directive UserDir defines where the Web server must look for user
files. A user directory is specified by using the ~ (tilde) prefix in front of a
user’s name in an URL (for example: http://www.CompanyA.com/~joe/).

For example, a server’s configuration file contains the directive UserDir
public_html. Assuming that Joe’s home directory is /home/joe, the URL
http://www.CompanyA.com/~joe/images/foto.gif would then return the file
/home/joe/public_html/images/foto.gif.

The use of the user directory feature has also some security aspects to
consider. For example, if you specify UserDir ./, the whole file system could
Advanced Configuration 85

become accessible through the URL /~root (assuming root’s home directory
is /). That is why the UserDir directive also supports the keywords enabled
and disabled. Using these, access to root’s home directory can explicitly be
disabled using by the following:

UserDir disabled root

Another security hole can be exposed by using erroneous CGI programs and
server side includes in a user’s directory. The IBM HTTP Server allows you to
disable CGI programs and server side includes by using the directive Options
-ExecCGI -Includes in the server configuration file. Another option, the
Options -IncludesNOEXEC, allows server-side includes, but the #exec
command and #include of CGI scripts are disabled.

To read more about CGI programs and server side include, see Chapter 10,
“Web Applications” on page 213. More about security can be found in
Chapter 6, “Deploying Security” on page 111.

The IBM HTTP Server accesses users’ home directories use the AIX
operating system APIs. This makes the location of the directories and files
transparent to the server and it does not care where these directories are
physically located. If the users’ home directories are located on some sort of
a distributed file system (such as NFS, AFS or DCE/DFS), they can be on
separate machine.

Using a distributed file system adds more flexibility, but may rise at the same
time some performance and availability concerns arise. The main advantage
of such a configuration is the ability for users to publish their files without the
necessity for any special file transfer to the Web server machine. HTML file
editing can be done locally on each user’s workstation and, after saving a file
to the specified directory (which appears to be local on the user’s
workstation), it is instantaneously available on the Web. On the other hand, a
Web server cannot access and serve these files if some network problems
arise or if a machine on which the files are physically located will experiences
a problem.

NFS (Network File System), AFS (Andrew File System) and DCE/DFS
(Distributed Computing Environment/Distributed File System) are variants
of distributed file systems that allow secure and efficient file sharing across
different locations and operating systems in local or wide area networks.

Distributed File Systems
86 IBM HTTP Server Powered by Apache on RS/6000

5.4 Multiple Language Support

In many countries, more than one common language is used. Companies
also want to address the international market through the Internet. For this
reason, it is desirable to provide information in several languages. The IBM
HTTP Server supports multiple language configurations by providing means
for transparent language negotiation between server and browser.

Multiple language support is a part of the broader IBM HTTP Server feature
called Content Negotiation which allows a server and browser to negotiate
document language, encoding and media type (for example, a client can
specify which video format it prefers: MPEG, MOV, or AVI). But this feature is
not widely used because most browsers do not fully implement the content
negotiation feature.

This section covers only language negotiation because it is most useful and
most widely supported. Encoding and media type negotiation works similar
and the following discussion on language negotiation applies to that as well.

5.4.1 Server Configuration
The IBM HTTP Server supports the content negotiation feature using the
mod_negotiation and mod_mime modules. They are both enabled by default
in httpd.conf by their respective LoadModule and AddModule directives, so
you do not need to do anything special (unless they have been disabled, of
course).

When the same resource (text, image) is available in several formats
(encoding, language), they are called variants. A server must select the most
appropriate variant according to client preferences.

There are two different ways to configure variants on the server:

 • Type maps, which are special files that explicitly list variants with related
information

 • MultiViews, which are variants lists automatically generated by the server
according to file extensions

5.4.1.1 Type Maps
Type maps are special files processed by the type-map handler. To enable
the handler and associate it with, for example, the file extension .var, the IBM
HTTP Server configuration file must include the following line:

AddHandler type-map var
Advanced Configuration 87

Type map file lists files and associated content information separated by
empty lines.

For example, CompanyA has some warranty information in English (file
warranty.html) and German (file garantie.html). The contents of the type map
file, named info.var, would then be the following:

URI: warranty.html
Content-type: text/html
Content-language: en

URI: garantie.html
Content-type: text/html
Content-language: de

In that case, a request for http:/www.CompanyA.com/info.var will return
information in the appropriate language according to the browser’s
configuration (see next section). If no appropriate content can be found (for
example if the browser accepts only French documents), a list of available
documents will be displayed, as can be seen in Figure 11.

Figure 11. Type Map Variants List

This gives the user the choice of selecting the appropriate document (which
should certainly be avoided by proper configuration of browsers and servers).

5.4.1.2 MultiViews
The MultiViews feature allows you to build variant lists automatically
according to file extensions. The MultiViews feature can be enabled by the
88 IBM HTTP Server Powered by Apache on RS/6000

directive Options MultiViews in the configuration file or by means of the
.htaccess file. Note that Options All does not set MultiViews. The
configuration file should also contain the file extension to language mapping
directives AddLanguage. It is also recommended to use the language priority
directive LanguagePriority for those cases when a browser does not specify
any language priority. The following fragment of the configuration file
illustrates how to setup MultiViews:

Options MultiViews
AddLanguage en .en
AddLanguage de .de
LanguagePriority en de

These directives associate file extension ".en" with the English language and
".de" with the German language. They also assign the English language
documents a higher priority when clients do not specify any language priority.

Now, if there are files info.html.en and info.html.de in the document root
directory, the request http://www.CompanyA.com/info.html will return the
appropriate document according to the browser’s configuration. If it is not
possible to find an appropriate document (for example, if the browser accepts
only French documents), the IBM HTTP Server returns a list of available
variants, as shown in Figure 12.

Figure 12. MultiViews Variants List

While the screen shown in Figure 16 is certainly not desirable for a user, it
shows you the basic operation of MultiViews in an non-working configuration.
Advanced Configuration 89

5.4.2 Browser Configuration
Users who want to use the language negotiation function of the HTTP
protocol must setup their Web browsers language preferences. Most popular
browsers support this feature. The following examples show how to set up
multiple language support in Netscape Navigator, Netscape Communicator
and Microsoft Internet Explorer.

Netscape Navigator (Version 4.X) and Netscape Communicator users can
access the language preferences from: Edit -> Preferences... -> Navigator
-> Languages. Here they can add or remove languages and change their
priority by clicking on the appropriate function buttons (see Figure 13).

Figure 13. Netscape Communicator Language Setup

In Microsoft Internet Explorer (Version 4), users can access the language
preferences from: View -> Internet Options... -> General -> Languages....
An example is shown in Figure 14 on page 91.
90 IBM HTTP Server Powered by Apache on RS/6000

Figure 14. Microsoft Internet Explorer Language Setup

Although the negotiation feature was supported in the HTTP protocol prior to
Version 1.1, many browsers did not support it in earlier versions. The HTTP
protocol also provides the option of assigning weights to each variant to
further tune the negotiation process between server and browser (which is
not detailed here any further).

5.5 Customized Error Messages

When the IBM HTTP Server encounters an error when serving a client’s
request (for example, a requested file does not exist or the access to it is
restricted), it returns a default error message to the client (a well known error
message for most of us, but if you have not seen it yet, see Figure 15 on page
92). These default error messages are very simple and give no clues to the
user as to what can be done next. You probably would like to customize these
messages to better suite your environment. For example, in case a document
cannot be found, you can give a user further advice about where to look for it,
point to a search engine, or simply link back to the home page.
Advanced Configuration 91

Figure 15. Standard Error Message

There are a number of situations when the IBM HTTP Server returns an error
message. Each of these errors has an assigned number, a so-called error
code. A full list of error codes can be found in the HTTP protocol specification
(RFC 1945 for Version 1.0 and RFC 2068 for Version 1.1; see B.3, “Other
Publications and Links” on page 228 for information on how to access RFCs).

The most common error codes are:

 • 401 – Authorization Required. This error means that in order to access the
resource, the user must prove his identity (usually with a password). In
case of this error, typical Web browsers will prompt for a user name and
password. If you skip that prompt (by pressing Cancel or ESC), you will
typically get this error message in your browser window.

 • 403 – Forbidden. This error means that the access to the requested
resource is prohibited. That could be as a result of a deny directive (for
example, restrictions by client IP address) or AIX file access permissions.

 • 404 – Not found. This error means that the requested resource, such as a
file, directory, or a script, does not exist at the specified location (see also
Figure 15). This error is very common for most users because of typos in
URLs or removed documents. It is highly recommended to customize this
error message to give a user some additional help.

5.5.1 Customizing Error Messages
The IBM HTTP Server supports custom error messages in its core. You can
instruct the server what to do in case of an error:

 • Return the default message

 • Return a customized message
92 IBM HTTP Server Powered by Apache on RS/6000

 • Redirect the request to another local or remote URL (including CGI
programs)

The first option is the default. It takes place if no other option is specified. You
can, however, specify that the e-mail address specified with the ServerAdmin
directive be included automatically as a hotlink in the default error message.
For example, we assume that the following two lines are included in the
server’s configuration file:

...
ServerAdmin webmaster@CompanyA.com
...
ServerSignature email
...

This causes the IBM HTTP Server to include a hotlink in its default error
messages that allows a user to click on and send an e-mail to the specified
address at webmaster@CompanyA.com (see Figure 16, notice the
underlined hotlink in the footer of the error page).

Figure 16. Error Message with Server Signature

The following example shows how to define a custom error message using a
ErrorDocument directive in the server configuration file:

ErrorDocument 404 "The requested resource cannot be found on this server.
Please return to our home page.

(Note that the above example is a single line that has been split for
representation.)
Advanced Configuration 93

Figure 17 shows the result of the custom error message defined above.

Figure 17. Example of Custom Error Message

As can be seen in the example above, HTML tags can be used in customized
error message. However, some browsers may not interpret them correctly
because that message does not have a standard HTML header.

The third option can be configured by placing a local or remote URL after the
respective error code behind the ErrorDocument directive. That URL can
point to either a static HTML file or to a script that processes errors. Local
URLs begin with a slash (/) and remote URLs include protocol and host
name. Here are some examples of error redirections:

ErrorDocument 401 http://www.CompanyA.com/security.html
ErrorDocument 403 /forbidden_pages.html
ErrorDocument 404 /cgi-bin/search.pl

You can use different error handling directives for each virtual host, directory
or location. You can also use them in the .htaccess files for individual
directories.

5.5.2 Multilingual Error Messages
There are some tricks that allow you to have error messages in different
languages appropriate to the browser’s configuration. These tricks use the

The ErrorDocument directive has a syntax that sometimes misleads
webmasters. A single quotation mark (") after the error code is required,
which indicates the beginning of the message and it does not require a
closing quotation mark. In fact, any other quotation mark is treated as part
of the message that would be shown along with the error message.

Syntax of the ErrorDocument Directive
94 IBM HTTP Server Powered by Apache on RS/6000

ErrorDocument directive, the content negotiation feature (see also 5.4,
“Multiple Language Support” on page 87) and eXtended Server Side Includes
(XSSI, see 10.4, “Server-Side Includes” on page 219).

Server side includes allow you to have a common page layout for all
languages and the content negotiation feature selects the corresponding
language.

A good place for further information on this tricky setup can be found at
http://www.apache.org/docs/misc/custom_errordocs.html.

5.6 File Uploading

Normally, HTML documents and relates files are sent to the Web server using
FTP protocol. That requires the user to run and manage an FTP server, which
consumes administrator time and system resources (and poses a certain
security threat). The IBM HTTP Server provides an opportunity to upload files
using the PUT and POST methods of the HTTP protocol. That integrates all
functions under one server, but improperly configured, it can create a serious
security breach.

While the HTTP protocol includes ways to upload files from a Web browser to
a Web server using either the PUT or POST mechanism, there is no standard
way of handling such requests on the server side. Thus, the IBM HTTP
Server does not include any handler that can process such uploads. You can,
however, find them on the Internet or write a small program yourself. PUT and
POST requests can be processed by either CGI programs or Web server
modules. The configuration is different in each case, but their common
purpose is to receive a file from the client, while at the same time tightening
security as much as possible.

In case of a CGI program, it is highly recommended to put it into a separate
directory and protect that directory using at least basic authentication (see
6.2, “Basic Authentication” on page 118) and, if appropriate, other
restrictions, such as IP addresses. With such methods, only authorized users
can use the upload function. An even higher level of security can be achieved
using SSL client authentication (see 6.5, “SSL Client Authentication” on page
146).

The following example shows how to configure the IBM HTTP Server to use a
Perl script called /www/put-cgi/put.pl for file uploading to the directory tree
/www/html using basic authentication and restriction by IP address:

<Directory /www/html>
Advanced Configuration 95

Script PUT /put-cgi/put.pl
</Directory>

<Directory /www/put-cgi>
AuthName "Web Publishing"
AuthType Basic
AuthUserFile /www/passwords/put.pwd
Order allow,deny
Deny from All
Allow from 1.2.3.6
Require valid-user
Satisfy All

</Directory>

ScriptAlias /put-cgi /www/put-cgi

The PUT method can also be handled by server modules, rather than a CGI
program. In that case, the configuration is dependent on that module’s
capabilities, but the security considerations and configuration basically
remain the same. You can find such a module by searching the Web site
http://modules.apache.org for keyword “put”.

More about using the PUT method can be found in the Apache Week article
“Publishing Pages with PUT” at http://www.apacheweek.com/features/put.

Another method of file uploading is the POST method. You also need at least
a CGI program or a module to handle this HTTP method. One of the most
widely used examples of such a file uploading method is through Microsoft’s
FrontPage Server Extensions.

WebDAV (World Wide Web Distributed Authoring and Versioning) is a new
Internet protocol for file uploading being developed by the Internet

Microsoft FrontPage is a popular Web authoring tool. It includes server
extensions as server side components that, among other things, provide
file uploading capabilities. The IBM HTTP Server is supported by Microsoft
FrontPage Server Extensions as Apache 1.3.3.

More information about Microsoft FrontPage Extensions can be found at
these URLs:

 •http://www.microsoft.com/frontpage/wpp/

 •http://www.rtr.com/fpsupport/

FrontPage Server Extensions
96 IBM HTTP Server Powered by Apache on RS/6000

Engineering Task Force (IETF). This protocol is not widely used (yet) but it
can be assumed that it will become the file uploading standard for the Web.
There is already a module mod_dav available which implements a limited
version of the WebDAV protocol. For more information on WebDAV, see RFC
2291 and point your browser at http://www.ics.uci.edu/pub/ietf/webdav/.

5.7 Logging

The IBM HTTP Server provides good logging options to track user behavior,
server usage and find problems that are related to Web pages. The figures of
Web server usage are often needed for marketing purposes. There are lots of
free applications on the Internet to parse the log files to fit into presentation
formats. In this section we will concentrate on showing how you can log every
useful detail in the Web servers to log files and how to read them. Many of the
problems and configuration errors are easily solved if the logging is defined
properly. In the IBM HTTP Server, the log files are ASCII text files that can be
viewed with basic UNIX tools.

5.7.1 Common Log Format
The log format is basically similar among all the Web servers. This log format
is also known as CLF, Common Log Format. Below is an example of a
transaction log file (TransferLog) entry:

1.2.3.4 - ihsadm [11/Dec/1998:16:14:48 -0600] "GET /acme.html HTTP/1.0" 200 238

The first field shows the IP address of the client, accessing the server. It can
also be an IP address of a firewall or a proxy server the client uses to access
the Internet. In this example, the Web server was not configured to resolve
the hostname and domain of the client, which is advisable for performance
reasons. The more efficient way to resolve the hostnames is to use the
logresolve program that is shipped with the IBM HTTP Server. The logresolve
program is introduced in Section 7.1.3.4, “Resolution and Mapping” on page
162. If the server had looked up the DNS hostnames, the IP address would
have been replaced with a hostname (if defined in DNS). The DNS lookups
can be defined on with HostnameLookups (on | off | double) directive. The
value double should not be used unless it is unavoidable. When double DNS
lookups are defined, the server does an additional lookup for the IP address
of the hostname it has resolved using the client’s IP address. Double DNS
lookups are done regardless of the value of the HostnameLookups directive
when the resources in a protected area are requested. If double DNS
resolution fails, that is, the IP address of the connecting client and the IP
address resulting from a double look up do not match, the access is denied.
Advanced Configuration 97

The second field of a transaction log entry is usually just a hyphen (-). The
hyphen in the log files represents that the information is not available. The
field is for Ident information. Ident is a protocol (RFC 931) based on the
presumption that the Ident daemon is running on the client machine. The
Ident daemon is usually not implemented (or configured) on client machines,
so the benefit are not worth the overhead it causes in the Web server. The
checking of the client’s Ident information can be controlled with the directive
IdentityCheck (on | off). The IdentityCheck directive defaults to off.

The third field displays the user name of the client, if the client user has
authenticated to the Web server using the Web authentication methods.
Remember that this file easily reveals the authorized Web users of the
system. If the file is not protected properly, anyone can produce a list of
possible user IDs with a command such as (<log file> is the server’s access
log file):

cat <log file> | cut -d’ ’ -f3,9 | grep -v 401 | grep -v ’-’

The date, time and timezone are enclosed into brackets. The date
representation consists of day number, three letter abbreviation for the month
and the four digit number for the year. The language of the abbreviation for
the month depends on the language environment used on the server
machine.The time is presented in 24 hour format: hours, minutes and
seconds, separated by colons. The timezone is presented with a +/- sign and
four digits without a separator (+/-hhmm).

Within the double quotes is the HTTP request that the client sent. Usually it
begins with GET, which is the basic method to request a file from the server.
The file name in the log file is written as the browser sees it. That is, the
location is not yet parsed to match the actual file name.

The following three-digit-number field (the second last), represents the status
code of the operation, the most commonly used status codes are as follows:

Table 9. Commonly Seen Status Codes in HTTP Requests

Status Code Description

200 OK - The request was completed successfully.

302 Moved Temporarily, Redirection - The request is redirected to some
other location by the server.

304 Not Modified - A Web server responds with this status code to a client’s
conditional GET request, where the client asked whether it can use the
cached copy of the requested resource.

400 Bad Request - Client has performed a request with a malformed syntax.
98 IBM HTTP Server Powered by Apache on RS/6000

A more complete list of status codes can be found in the RFC document for
HTTP Version 1.1 (http://www.w3.org/Protocols/rfc2068/rfc2068).

The last field in the transfer log entry is the count of transferred bytes. This
does not include the header parts in the response.

401 Unauthorized - The Web server denies access because it has some
access limitations defined to requested resource (See 6.2, “Basic
Authentication”).

403 Forbidden - The server configuration denies the access to this
requested resource.

404 Not Found - The server was not able to find the requested resource.

405 Method Not Allowed - The Web server configuration denies the use of
this method.

406 Not Acceptable - The client requested a resource with content
characteristics that are not acceptable (See 5.4, “Multiple Language
Support”)

500 Internal Server Error - The Web server encountered an internal error,
which prevented it from fulfilling the request.

503 Service Unavailable - The Web server can give that status code, if the
defined limit of users is exceeded.

Status Code Description
Advanced Configuration 99

5.7.2 Error Log
The error log does not only contain error messages, but also informational
messages, debug messages and user tracking information. For more
information about the user tracking with client certificates, see 6.5.1, “Client
Certificates and the IBM HTTP Server” on page 148. The logging level of the
IBM HTTP Server can be adjusted with the LogLevel directive. The possible
values for LogLevel are debug, info, notice, warn, error, crit, alert and emerg.
By default, the logging level is set to warn. That means that all the events,
except debug, info and notice information are written to the error log file.

The structure of error log entries differs from CLF (Common Log Format).
Below is an excerpt from an example error log:

[Fri Nov 6 14:24:48 1998] [error] [client 1.2.3.4] File does not exist:
/usr/docs/status

Sometimes you might see a log file entry like this:

204.123.9.20 - - [11/Nov/1998:15:24:25 -0600] "GET /robots.txt HTTP/1.0"
404 336

A robot is a program that traverses Web sites on the Internet and indexes
the keywords it finds into it’s own database. Robots are typically used to
update page indexes of search engines. The machine in the example
above is called scooter and it is one of Altavista’s Web robots.

robots.txt is a file that you can add to your document root and define some
restrictions for robots; what they should not index and what they should.
You might want to deny robots of indexing some frequently updating pages.

Here is an example of a robots.txt file:

The rules below applies to all robots
User-agent: *
Disallow: /pics/ # Nothing to index here
Disallow: /Docs/Serv/hot/ # Content due to change frequently

The file robots.txt must be located directly under document root and the
access rights should permit anyone to read it.

More information about robot exclusion can be found, for example, at
http://info.webcrawler.com/mak/projects/robots/robots.html.

Robot Exclusion
100 IBM HTTP Server Powered by Apache on RS/6000

[Fri Nov 6 14:24:57 1998] [error] [client 1.2.3.4] File does not exist:
/usr/lpp/HTTPServer/share/htdocs/status
[Fri Nov 6 14:25:05 1998] [error] [client 1.2.3.4] File does not exist:
/usr/lpp/HTTPServer/share/htdocs/server-status
[Fri Nov 6 14:26:35 1998] [notice] SIGHUP received. Attempting to restart
[Fri Nov 6 14:26:37 1998] [notice] IBM_HTTP_Server/1.3.3 Apache/1.3.4-dev
(Unix) configured -- resuming normal operations
[Fri Nov 6 14:26:41 1998] [error] [client 1.2.3.4] File does not exist:
/usr/lpp/HTTPServer/share/htdocs/server-status

In each error log entry, the date and time are enclosed into brackets first, and
the following field describes the severity of the event. If a client was involved
in the event, its IP address (or hostname) is contained in the next field. The
explanation part begins with the name of the module where the event
occurred. If the event occurred in the server core, the field begins with “httpd”
or just the message text.

ErrorLog messages can also be directed to the syslog daemon that handles
all the system error massages on AIX. This opens up a possibility to combine
the IBM HTTP Server with some system management software like Tivoli TME.
By default, the directive uses syslog facility local7, but the facility can be
overridden by adding a colon and the facility name to the directive. For more
information about the syslog daemon, see the online manual page for syslogd or
the AIX manuals. The syslog logging can be turned on by defining the directive
ErrorLog as shown below:

ErrorLog syslog or
ErrorLog syslog:local7

Error log files can also be rotated using the rotatelogs command. The use of
rotatelogs is described later in 5.7.4, “Rotating the Server Logs” on page 103.

5.7.3 Customizing the Log Format
The IBM HTTP Server provides powerful tools to customize the log format to suit
your purposes. You can even log events to multiple log files. If you are not afraid
of the performance of your server, this feature can be used to build, for example,
troubleshooting logs and security logs.

While the TransferLog directive accepts only a file name for logging
transactions, the CustomLog directive also accepts formatting information or
a nickname for predefined formats as shown below:

TransferLog /var/log/http/access_log
CustomLog /var/log/http/custom_log "%h %l %u %t \"%r\" %s %b"
Advanced Configuration 101

These two directives would create two log files that have the same content.
You can also define log formats by using the LogFormat directive. Let’s go a
little further with log files:

LogFormat "%h %l %u %t \"%r\" %s %b" CLF
LogFormat "%h %l %u %t \"%r\" %s %b \"%{Referer}i \"%{User-agent}i\"" ECLF
LogFormat "%t \"%404{Referer}i\" \"%r\" 404_requests
LogFormat "%!200,304,302h %u %t \"%r\" %s" Failed_requests

CustomLog /var/log/http/access_log CLF
CustomLog /var/log/http/404_log 404_requests
CustomLog /var/log/http/problems_log Failed_requests

We have defined a couple of log formats that are used in the CustomLog
directives. We have replaced the TransferLog directive with the CustomLog
directive that was shown earlier. We made a special log file for logging all the
404 (Not Found) errors. The log format can be defined so that it will produce
an event only for requests that end up with a certain status value. This
condition is defined in the 404_requests LogFormat by setting the status code
just after the percentage character in the %{Referer}i argument.

The example below is a clip of the 404_log file defined in the previous
example. That reveals that on the HTML page new_prod.html is a broken link.
The second row is probably the same client who has now tried to reload the
missing document, since it has not the referrer field.

[14/Dec/1998:16:50:39 -0600] "http://www.CompanyA.com/new_prod.html" "GET
/Docs/Serv/hot/33823_rel_notes.html" HTTP/1.0"
[14/Dec/1998:16:50:42 -0600] "-" "GET /Docs/Serv/hot/33823_rel_notes.html"
HTTP/1.0"

The last log definition example shown above logs all the events that have not
ended successfully. This is done by excluding the successful status codes in
%h argument. The exclusion is done by adding a exclamation mark (!) before
the status code or the list of status codes. The status codes can be added as
a condition statement into any % argument in the syntax. Here are the
arguments that can be used in log format definitions:

Table 10. Custom Log Format Arguments

Argument Definition

b The size of the content data in response

f Requested filename

{ENV}e Value of environment variable ENV

h The IP address of the client (or hostname, if DNS lookups are used)
102 IBM HTTP Server Powered by Apache on RS/6000

There is a number of free log analyzing tools available on the Internet that
you might find helpful, for example http-analyze (http://freshmeat.net).

5.7.4 Rotating the Server Logs
The IBM HTTP Server does not change or archive the log files; it uses the same
log file as long as the filesystem has free space in it. In order to copy the log files
to another storage media, you have to use a special application for switching the
log files without shutting the server down. The log files are opened for append
when the Web server is started.

Because the IBM HTTP Server provides the possibility to redirect the logging to
a UNIX pipe file, it is possible to use an external application to do the log file
change. The rotatelogs application that ships with the IBM HTTP Server can be
found in the directory /usr/lpp/HTTPServer/sbin. It takes two arguments; a log
file name and a timer value that counts the time in seconds after the log file
switch should be done. The rotatelogs creates the log file and adds a system
time when the server is started as an extension to the log file name. It creates

a The IP address of the client

{REQ_HEAD}i The value of content of header line REQ_HEAD in the request

l Remote logname (from ident)

{FOOBAR}n The contents of note "Foobar" from another module

{REPL_HEAD}o The value of content of header line REPL_HEAD in the response

p The port number that was used to make a connection to the server

P The process ID of the server process that served the request

r The request

s Status code of the request

t Time in common log format time format

{TIMEFMT}t Time in customized time format. Time format must follow the rules
that are specified for strftime system command.

T The time that it took to serve the request

u Remote user name that the client has given the server

U The URL from the request

v Server name that was used to connect the server

Argument Definition
Advanced Configuration 103

a new log file for the next entry that occurs after the expiry of the timer, such
that there are no empty log files created during times when there is no activity
in the Web server.

The rotatelogs program can be used with the directives ErrorLog,
TransferLog and CustomLog:

CustomLog "|rotatelogs /path/to/logs/access_log 86400" ECLF

The timer value represents seconds, so the 86400 value represent 24 hours.

The piping of the log messages to a program opens up a lot of possibilities to
implement auditing and accounting systems. Bear in mind, however, that
such a program is executed with the user ID that is used when starting the
main server, which in most cases is the root user. All the programs that are
executed with root user ID should be designed, programmed, checked and
double-checked with extreme caution in order to not introduce security holes
into your system.

In case you need to change the server logs manually, for instance, because
you are running out of free disk space in a file system, you can do this by
copying the log file to another location (or to tape archive) and then emptying
the file without recreating it, as shown below:

cp /usr/lpp/HTTPServer/var/log/access_log /archive/access_log.121298
cat /dev/null > /usr/lpp/HTTPServer/var/log/access_log

Note: Although this procedure frees the allocated space on disk for the
particular log file, the ls command may still report the file to be large. To avoid
such confusion, this procedure should not normally be used in daily
operations.

5.8 Auditing

Logs are quite useless, unless they are looked after every now and then or
saved for future examination, in case it becomes necessary. The Web server
logs reveal, for instance, disfunctionalities in Web sites, such as broken links
and certificate expiries. Logs can be used to work around the problem with
the lack of control in Web server authentication. In Web authentication there
is usually no possibility to protect the system from brute force password
cracking. Since the HTTP communication is stateless, it is difficult to detect
that two failed authentication failures have anything in common with each
other.
104 IBM HTTP Server Powered by Apache on RS/6000

When it comes to security, attacks against authentication can be easily
noticed, but attacks against CGI programs and other Web applications are
very difficult to notice. Keep track on the executable CGI-programs that are in
your system and use only programs that are verified to handle all the
parameters correctly and are considered to be secure. Security of CGI
programs is discussed in more detail in Section 10.2.4, “CGI Security” on
page 218.

In the log file, unauthenticated requests to protected documents produce an
event, where the status code is 401 and the user name is empty. If the user
does not pass the authentication, the log file entry includes the user name he
has tried. The failed “logins” can be found from the log file by searching for
entries that have status code 401 and whose username field is not empty.

To provide some level of security, you could define a maximum number of
failed access attempts per user within a certain time frame. For example, a
relatively simple shell script program that searches the failed access attempts
for each user could disable such users that exceed these limits.

Let’s say that you tolerate only two failed access attempts per day and you
have collected all the 401 events to a log file. The log file could look
something like this:

[14/Dec/1998:08:47:16 -0600] 1.2.3.6 -
[14/Dec/1998:08:47:17 -0600] 1.2.3.6 goofy
[14/Dec/1998:09:01:13 -0600] 123.3.3.12 -
[14/Dec/1998:09:01:19 -0600] 123.3.3.12 dale
[14/Dec/1998:09:30:03 -0600] 1.2.3.6 -
[14/Dec/1998:09:44:16 -0600] 1.2.3.6 -
[14/Dec/1998:11:02:32 -0600] 1.2.3.6 goofy
[14/Dec/1998:13:40:22 -0600] 127.0.0.1 -
[14/Dec/1998:13:47:16 -0600] 127.0.0.1 -
[14/Dec/1998:13:47:24 -0600] 127.0.0.1 goody
[14/Dec/1998:15:47:44 -0600] 1.2.3.6 -
[14/Dec/1998:15:47:49 -0600] 1.2.3.6 ihsadm
[14/Dec/1998:17:34:44 -0600] 1.2.3.6 -
[14/Dec/1998:22:34:52 -0600] 209.3.244.2 -
[14/Dec/1998:22:34:55 -0600] 209.3.244.2 ihsadm
[14/Dec/1998:22:34:59 -0600] 209.3.244.2 ihsadm
[14/Dec/1998:22:35:07 -0600] 209.3.244.2 ihsadm
[14/Dec/1998:22:35:10 -0600] 209.3.244.2 ihsadm
[14/Dec/1998:22:35:14 -0600] 209.3.244.2 ihsadm

From this kind of log, you could easily notice that someone has tried to guess
the password of ihsadm. A script could detect that the failed authentication
count is exceeded for this user.
Advanced Configuration 105

5.9 Other Features

The extensibility of the IBM HTTP Server through modules is almost endless.
Many modules have been developed besides the ones that are available from
the Apache Group. This section mentions just a few that might be useful in
certain environments.

5.9.1 Fixing Typos in URLs
The module mod_speling, included with the IBM HTTP Server, allows you to
automatically correct minor errors in URLs, such as single character
omissions or insertions, transposition or single wrong characters. It also
enables case insensitive URLs. The latter feature is especially useful when
HTML documents are prepared on case insensitive operating systems like
Windows.

Note: The author(s) of mod_speling actually pronounced the need for such a
module right by misspelling its name; the module is correctly spelled
mod_speling, not mod_spelling.

For example, assume there is a file support.html. All the following requests
would cause the server to correctly access and return that file:

 • suport.html (one character is missing)

 • suppoprt.html (one character is added)

 • suppotr.html (order of two adjacent characters are changed)

 • sypport.html (one character is wrong)

 • SupporT.HtmL (wrong case)

The main drawback of this URLs fixing feature is its impact on the server’s
performance because the file system needs to be scanned on each request.
If two or more similar files are found, the server returns a list of these files by
asking the user for a selection. That can expose unwanted file names and
can be treated as security flaw.

The URL correction feature can be enabled using the directive CheckSpelling
in the server configuration file. The required module (mod_speling) is enabled
by default with a corresponding LoadModule and AddModule directive.

5.9.2 Caching Proxy Function
The caching proxy feature is not included in the current distribution of the IBM
HTTP Server. Should the caching proxy functions be necessary in your
environment, the module mod_proxy can be acquired from the standard
106 IBM HTTP Server Powered by Apache on RS/6000

Apache server distribution (http://www.apache.org) and compiled for the IBM
HTTP Server. For information about how to add modules to the IBM HTTP
Server, refer to Chapter 8, “Building HTTP Server Modules” on page 177.

The caching proxy module mod_proxy performs two basic functions:

 • It allows internal users to access the Internet and at the same time as
restricting access from Internet to internal network (firewall function).

 • It improves performance and reduces network load by caching retrieved
information on local disk.

The proxy function is defined in the HTTP protocol specification. A proxy Web
server acts as server and client at the same time. It receives proxy requests
from a client (browser) and forwards these requests to a destination server as
if it was a client itself. The answer received is then returned back to the client.
Since all information passes through the proxy server, it can do logging and
caching.

The required mod_proxy is not included with the IBM HTTP Server (see 3.1,
“Product Contents” on page 33). Please read Chapter 8, “Building HTTP
Server Modules” on page 177 to learn how such modules can be included.

The caching proxy configuration consists of a server configuration part (proxy
function and cache parameters) and a client configuration part (proxy server
address and port).

After you have compiled mod_proxy as a DSO library module, copy it to the
/usr/lpp/HTTPServer/libexec directory and add the following directives to
corresponding parts of the configuration file:

LoadModule proxy_module libexec/mod_proxy.so
...
AddModule mod_proxy.c
...
ProxyRequests On

The caching function can be enabled by the following directives:

CacheRoot /www/cache
CacheSize 10000
CacheGcInterval 1.5

CacheRoot defines a directory in which retrieved information will be cached
and CacheSize specifies the desired total cache size in kilobytes. Though
actual cache size can exceed this value, a garbage collection task tries to
keep it below the defined limit. The directive CacheGcInterval specifies the
Advanced Configuration 107

frequency of the garbage collection process in hours (for example, 1.5 means
90 minutes).

The proxy server access can be protected by the same configuration as any
other Web server resource (see 6.2, “Basic Authentication” on page 118). In
that case, users must provide authentication information (usually name and
password) to get access to the proxy function.

For further information about server configuration refer to original mod_proxy
documentation at: http://www.apache.org/docs/mod/mod_proxy.html.

For a proxy client configuration example, we use Netscape Communicator.
Select the following sequence of menus to get to the configuration dialog as
shown in Figure 18 on page 109: Edit -> Preferences... -> Advanced ->
Proxies -> Manual proxy configuration -> View.... On this dialog, fill in the
HTTP proxy server name and address fields according to the server’s
configuration.

While the mod_proxy module basically represents the functions of a proxy
server, it is not intended to be used as a full-fledged proxy server.
Specialized products, such as the IBM Web Traffic Express, are certainly
better suited for large-scale proxy server exploitation.

A Replacement for a Proxy Server?
108 IBM HTTP Server Powered by Apache on RS/6000

Figure 18. Netscape Communicator Proxy Setup

If a browser is set up this way (see Figure 18), it sends its requests to the
proxy server at the specified address and port, rather than to the Web server
that might be running on the same machine and behind the same port. The
proxy server will then forward that request to other Web servers, including the
one that might be running on the same machine and port. Note that, as
shown in Figure 18, browsers also allow you to exclude certain domains from
using a proxy.
Advanced Configuration 109

110 IBM HTTP Server Powered by Apache on RS/6000

Chapter 6. Deploying Security

Because of the rapid growth of the Internet, security has become one of the
most essential issues in network communication. Commercial transactions
have taken place on the Internet and organizations’ internal intranets.
Electronic commerce evolves so rapidly that it is easy to give reasons for
paying attention to security; lapses in security have a price-tag.

The common believe of the Internet as a paradise for scoundrels and villains
who try to swindle your money might be a little overstated, but a network has
its pitfalls. When the Internet started to expand, security was not one of the
main concerns. Everyone was so enthusiastic to invent new ways to utilize
this exciting new, nonprofit network, that the concern about security was left
aside. Quite often, only simple ways of hiding information from unauthorized
users were chosen.

The Internet protocol is founded on trust that every party obeys some
common rules. It is easy for a hacker, not behaving according to these rules,
to use that trust against the principles of the Internet itself. Today the Internet
and the many intranets cover all the aspects of community, from personal
communication to government processes, and from research to business. It is
unfortunate that this kind of opportunities also attracts a few individuals with
something other than honesty in mind.

After introducing some basic elements of security, this chapter will introduce
the important concepts of the security-related features and the configuration
of the security functions of the IBM HTTP Server.

6.1 Basic Elements of Security

Security is an abstract issue that goes hand-in-hand with risk. Minimizing the
risk goes along with costs in terms of time and money. One of the most
important things to do for security is to define the level of risk you are
prepared to take. Finding the balance between the risk and security is often
difficult—no one knows what kind of threats there are. Security is not a
one-time thing; keeping the security standard that was once defined and
introduced requires regular checking of log files and continuous tracking of
new challenges, hacking methods and threats.

The ISO 7498-2, the International Organization for Standardization (ISO),
defined the common security services found in modern IT systems. The list
consisted of authentication, access control, data integrity, data confidentiality
and non-repudiation. The list was updated later in the ISO 10181 with
© Copyright IBM Corp. 1999 111

availability, security audit and key management. Some of these important
terms are described briefly below:

Authentication Authentication is the process of verifying the validity of a
claimed identity. The ideal authentication would be
identification.

Access Control Assurance that each user or computer that uses the
service is permitted to do what he or she asks for. The
term authorization is often used as a synonym for
access control, but it also includes granting the access
or right to perform some actions based on access rights.

Data Confidentiality Sensitive information must not be revealed to parties
that it was not meant for. Data confidentiality is often
also referred to as privacy.

Data Integrity Data integrity assures that the data is not altered or
destroyed in an unauthorized manner.

Non-Repudiation Assurance that a sender cannot deny being the source
of a message, and that the recipient cannot deny the
receipt of a message.

Availability The availability (over time or in terms of response time)
of a system. While this is normally not a security-related
term, it may become so when dealing with denial of
service attacks that may intentionally slow down or
completely paralyze a system.

Security Audit A process where an independent party checks the
security level of an organization or computer system.

Key Management Key management deals with the secure generation,
distribution, and storage of keys used in cryptography.

As far as Web servers are concerned, all of these security areas may be
involved.

6.1.1 Physical Security
Physical security is the base for any viable security implementation. If
someone wants to steal your information, it could be easy to take a whole
machine and dig the information out of it on a kitchen table. The physical
access to servers should therefore be controlled and logged. As another
precaution, it is a good habit to always log off from of a computer’s console
when it is not used. UNIX passwords protect the running system fairly well.
112 IBM HTTP Server Powered by Apache on RS/6000

Network connection to the Internet should be provided by a trusted Internet
Service Provider (ISP). Web servers that are accessible from the Internet
should be protected against unlimited access. This is usually done by
protecting the connection between the ISP and the Web server with a firewall
or a screening router. A screening router is basically a router that has some
screening rules defined for the purpose of protecting the systems that are
behind it. Almost every modern router has the option of defining some rules,
for example denying all traffic that originates from the untrusted side and try
to make connection to unspecified ports on the secure side. A firewall has
basically the same function, but compared to a screening router, a firewall
has better logging options for traffic.

Depending on the importance of the Web server, some precautions should be
taken. It is advisable to turn off any unnecessary services and keep the
system as simple as possible in terms of additional applications. It is easier to
keep track of the current users, file permissions and machine behavior if you
have dedicated your system to serve just as a Web server. One of the basic
steps in implementing security is the classification of information and users. It
is advisable to have some information about every account in the system and
a clear view of what those accounts are allowed to do and when they do it. In
systems that are used by many people, it is crucial to not have multiple users
who use the same user accounts. The user accounts should be reviewed
periodically against expired accounts and password rules should exist and be
enforced that do not allow trivial passwords. In public domain software there
is a good selection of different kinds of password cracking tools that can
serve positively as applications for security maintenance and audit purposes.

Physical security must always be part of a complete security system that
incorporates all the preconditions and procedures that are involved. This
should be documented in a security policy paper. Such a document should
also contain clear instructions about how to handle situations when security is
compromised.

6.1.2 Logical Security
Logical security consists of authentication, authorization and encryption.
Logical security only makes sense when a certain level of physical security is
implemented. For example, biometric authentication, such as a fingerprint
reader, can easily be spoofed if the sensor is not physically secured and its
output is not encrypted. Passwords can be eavesdropped in a company’s
intranet or somebody may have left an authenticated communication session
open and left the desk for a cup of coffee. Since the issue also concerns
end-users, it is important to design security procedures in a user-friendly way.
Deploying Security 113

6.1.2.1 Authentication and Identification
Authentication is usually done by challenging something you know,
something you have, or something you are. Asking for a user ID and
password pair is a typical example of the first category. Some physical
device, such as smartcards, count for the second category. Also, certificates
fit into this category. The third, something you are, is considered to be the
most accurate way to authenticate a person, but it is also the most difficult to
implement. There are devices which can measure human biometrics, such as
fingerprints or eye retinas.

The simplest (and most common) way to authenticate a user is to ask for a
user ID and a password. This method is good as long as the passwords are
not too easy and are either transferred over the network securely or not at all.
The simple passwords are easily broken by using brute-force method. In most
operating systems it is possible to define some rules for passwords. If such
rules for password are too strict, users may have problems remembering
them, creating another exposure since users have to write them down.

Using brute-force methods means that the password is cracked by guessing
and testing possible passwords, or using dictionaries of most often used
passwords. Using the brute-force attack against the operating system might
not be possible because most operating systems can limit the number of
invalid logins. User authentication in Web servers usually do not have
limitations of this kind.

In Web servers, authentication can be based on the client’s IP address,
subnet or the domain name. However, the IP address and domain name are
not fully trustworthy. A deterministic hacker can quite easily spoof his IP
address to be something else. It is possible to overcome these problems by
defining secure interfaces and implement anti-spoofing in firewalls and
routers. However, checking the IP addresses or domain names might not
keep hackers out of your system, but it can keep the honest person honest.

It has been said in the paragraph above that biometrics are the best
authentication methods. This is only true as long as the biometric sensors
are reliable enough and the “object” to be authenticated is a human being.

If a computer, a client, or an application needs to be authenticated, then
there is obviously no way to do biometric authentication. In those cases,
the second method as described above, using certificates, is the most
common way used for reliable authentication.

What About Non-Human Authentication?
114 IBM HTTP Server Powered by Apache on RS/6000

The IBM HTTP Server provides an option to double-check IP addresses using
DNS service (HostnameLookups Double), but turning on this option may have
an effect on Web server performance.

Except when SSL connections are being used (see 6.4, “Secure Sockets
Layer, SSL” on page 129), the HTTP authentication passwords are
transferred over the network without decent protection. The Base64-encoded
user ID and password can be decoded in no time.

Today there are also more sophisticated methods to authenticate a user. One
of them is the unforgeable SSL client certificates. Client certificates are
described later in this chapter in 6.5, “SSL Client Authentication” on page
146.

Digital certificates are a good way to prove the identity of a person or another
object. Certificates are digital documents that contain the information about
the person or object that owns the certificate. A certificate also contains a
public key that can be used for encrypting or decrypting messages. The basic
idea behind a certificate is that a trusted authority, called a Certificate
Authority (CA), has once identified you and proves that you are who you
claim to be. The public key contained in such a certificate can be used to
encrypt information that is only intended for the certificate owner because the
certificate owner is in possession of the secret private-key that is required to
decrypt the messages encrypted with his public-key. The certificate and the
public key are freely-distributed information. The certificate also contains the
digital signature of the signer Certificate Authority, which protects the
certificate from tampering.

Because the HTTP is a stateless protocol, it makes authentication schemes
difficult. Neither the client nor the server keep track of the status of a current
connection. Because of this, the protocol does not support a status like “logged
on” or “logged off”. If required, some additional logic must be added, for example
by using server-side programs that keep track of such connections and states. In
addition, cookies in Web browsers can be used to maintain a certain status.

6.1.2.2 Authorization
Access control takes place after authentication. Authorization grants or
denies the user accesses or rights to perform some operation based on the
user’s identity. In UNIX systems, for example, the file access control is based
on the user ID and access control attributes attached to each directory and
file.

In a Web server environment, the authorization is the Web server’s
responsibility. The underlying file system restrictions should normally not
Deploying Security 115

restrict the access to files within the scope of the server. When the Web
server cannot access a file that is in its scope, it returns an error message
(such as 403 Forbidden). The Web server serves files from its scope,
according to scoping rules set forth in the server’s configuration file, normally
the httpd.conf file. It is highly recommended that a Web administrator has a
logical sketch of that scope, such as the example shown in Figure 19. With
such a drawing, it is easy to define access permissions on directory and
subdirectory levels that must then be defined with corresponding directives in
the server’s configuration file. The drawing does not need to be too detailed.
The scope of a Web server should be limited such that it contains only files
that clients are allowed to request. Security or configuration related files
should never be stored within a Web server’s scope. Trusting that no one will
ever come across some files in a filesystem is foolish (that’s called security
by obscurity).

Figure 19. Logical Structure of a Web Site (Example)

You should be careful with symbolic links, too, because those can
unintentionally enlarge the Web server’s scope. In the server configuration
file you can define whether the Web server should follow symbolic links or
not. It is a good idea to not allow this. The Directory options to look for are
FollowSymLinks and SymLinksIfOwnerMatch.

The use of the UserDir directive can also be a security flaw. If users are
allowed to publish their own Web pages off their home directories by setting
the UserDir to something like “./”, accessing http://www.CompanyA.com/~root/
could expose unwanted files to the users.

Document Root

Docs

Pics
Dev

Mktg Supp Serv

Protected

RD

Docs
Pics

Mktg Supp ServRD

Protected

Marketing Group

Research &
Development
116 IBM HTTP Server Powered by Apache on RS/6000

6.1.2.3 Encryption and Data Integrity
Cryptography provides mechanisms for transforming plain text to ciphertext
by encryption and, vice versa, ciphertext to plain text by decryption. The
modern key-based cryptography uses keys as a seed for the algorithm. The
key is a binary string. There are two kinds of key-based cryptography;
symmetric and asymmetric cryptography. The latter is also known as
public-key cryptography. The main difference is that in symmetric
cryptography the encryption and decryption are done with the same key,
while public-key cryptography uses a key pair for encryption and decryption.
A message encrypted with one of the two keys can only be decrypted with the
other key. The following example clarifies the difference, using two
well-known characters often referred to in the security literature, Alice and
Bob.

Alice would like to send confidential e-mail to her colleague Bob. If they used
symmetric cryptography, they would have to agree on a common key they
would use for encryption and decryption. A problem that arises is that the key
cannot be simply exchanged in e-mail messages because of the lack of
security in e-mail. Because of this, Alice and Bob would have to find a way to
securely exchange their key, which might not be easy. Encryption and
decryption would then be done with that single key used on both ends of the
conversation. If either Alice or Bob wanted to securely communicate with
other parties as well, a separate secret key would have to be maintained and
exchanged for each communication partner.

If Alice and Bob used public-key cryptography instead, Alice could have
asked Bob to send his public key to her first. In fact, because it is not a secret
key, Bob could also furnish his public key by any other means, such as
through his Web site. Alice could then encrypt her message using Bob’s
public key and send the encrypted message to him. Only Bob would be able
to decrypt the message because only he is in possession of the private key
that must be used to decrypt that message. Not even Alice would be able to
decrypt the message that she encrypted.

Now a new problem arises: How does Alice know for sure that the public key
she is using is Bob’s public key and she is indeed talking to Bob? One way to
verify the integrity of data in such occasions would be that Bob runs the key
through some hash function, and then includes the resulting hash (also
known as fingerprint, see below) with the message. Alice can then run the
same hash function and compare the fingerprints. If the fingerprints match,
the key is not corrupt. But this still does not guarantee that the sender was
Bob; it could have been anybody pretending to be Bob, using a fake
private-public key pair. The way to solve this is by involving a trusted third
Deploying Security 117

party that certifies Bob’s identity by issuing a certificate to Bob. Bob can then
use this (his) certificate and send it to Alice, along with a message and a
fingerprint. Only the use of such a certificate allows Alice to be assured that
Bob was the sender of the message. (Certificates actually involve some more
steps that are not discussed here.)

Hash functions, as mentioned above, are complex mathematical functions
that reduce the length of any arbitrary length message to a fixed length
fingerprint. The fingerprint is very unlikely to be the same for different or
altered messages and it is considered impossible to construct another
message that yields the same fingerprint. Also, it is impossible to reverse
engineer the original message from a fingerprint. The most often used hash
functions are MD5 and SHA-1.

The above was a very brief and simplified description of how public-key
cryptography works and what certificates are. There will be more details in
the sections that follow.

The IBM HTTP Server implements these methods in the SSL module and in the
authentication methods, as explained later in this chapter.

6.1.3 Authentication Schemes Supported by the IBM HTTP Server
The authentication schemes that are available with the IBM HTTP Server are
basic authentication and digest authentication. Because of the modular
structure of the IBM HTTP Server (as well as the Apache Web server) and the
authentication API, there is a variety of authentication modules available for
different use. In the two sections that follow, basic authentication and digest
authentication are discussed, along with some issues related to them.

The IBM HTTP Server also supports the Secure Sockets Layer (SSL) protocol
used for secure connections between browsers and servers. This should not be
confused with authentication; SSL only assures a secure connection that
prevents any attacker from spoofing the network. The SSL module and the SSL
client certificates will be discussed later in 6.4, “Secure Sockets Layer, SSL” on
page 129.

6.2 Basic Authentication

The basic authentication is defined in the HTTP/1.0 protocol and is
implemented in most (if not all) of the widely used Web browsers and servers.
Basic authentication implies that the user is authenticated according to his
identity in the network (IP address, domain name, subnet of IP address) or
the user ID and password he or she submits. The authentication can also be
118 IBM HTTP Server Powered by Apache on RS/6000

based on a combination of these elements. However, as mentioned earlier,
basic authentication based on network parameters such as IP addresses is
not very secure since it is relatively easy to falsify.

The basic authentication configuration can be defined statically in the server
configuration file(s) that the server reads when it is started, or, more
dynamically, in the .htaccess file(s). If the .htaccess file is used, the server
reads it every time it accesses the directory, and thus, changes will
automatically be picked up the next time that directory is accessed. The
configuration elements are the same on both methods (see 6.2.2, “Using the
.htaccess File” on page 123 for more details about the .htaccess file). User
IDs and passwords, if used, can be stored in either a text file very similar to
the /etc/passwd file on UNIX systems, or in an indexed database file. The use
of database files, rather than textual flat files, positively affects server
performance as the number of user accounts increases. More about
authentication files can be found in 6.2.3, “Authentication Files and
Databases” on page 124.

6.2.1 Setting Up Basic Authentication
Basic authentication is implemented in the mod_auth module which is
configured in the configuration file by default. It provides basic user
authentication using simple textual user ID/password and group files.

Security-related directives in the server configuration file(s) may occur in the
outermost level or within any <VirtualHost>, <Directory> or <Location>
containers. The outermost definitions apply to all the resources in the server that
are not specifically redefined by further container definitions.

The following example shows a <Directory> container with a minimal set of
security-related directives for the directory structure that was described
earlier in the Figure 19 on page 116:

<Directory /usr/lpp/HTTPServer/share/htdocs/Docs/Mktg>
AuthType Basic
AuthName "Protected Material"
AuthUserFile /usr/lpp/HTTPServer/security/users
AuthGroupFile /usr/lpp/HTTPServer/security/groups
Require group mktg_grp rd_group
...

</Directory>

In the configuration file clip above, the location /Docs/Mktg is protected using
basic authentication such that it can be accessed only by people who are
members of the mktg_grp or rd_group groups. The members of these groups
Deploying Security 119

are listed in the /usr/lpp/HTTPServer/security/groups file, as specified by the
AuthGroupFile directive. The file specified with the AuthUserFile directive
contains the authentication data (the user IDs and the encrypted passwords)
for the users. These authentication files are described in 6.2.3,
“Authentication Files and Databases” on page 124. The AuthType directive
tells the server what authentication protocol is to be used for that resource. In
order to have the Require directives working, you have to define at least the
AuthName (realm) for the protected region within the Web server’s scope.
The text specified in the AuthName directive will be presented to the user on
the logon pop-up dialog upon first access to that directory, as shown in Figure
20.

Figure 20. Authentication Pop-Up Dialog

The Require directive defines which users and groups are to be granted
access the area. The Require directive also accepts the value “valid-user”
that tells the server to grant access to anyone who is listed in the defined
password file.

The following directory container protects the /Docs/RD directory:

<Directory /usr/lpp/HTTPServer/share/htdocs/Docs/RD>
AuthType Basic

Besides the mod_auth module, there is another modules that works in a
very similar manner. It is the module mod_auth_dbm, which provides the
possibility to use database-type files as a repository for the user IDs and
passwords rather than plain text files as the mod_auth module does. The
description given here about the configuration of the mod_auth module
equally applies to the mod_auth_dbm module, except that the file name
directives are AuthDBMUserFile and AuthDBMGroupFile, rather than
AuthUserFile and AuthGroupFile, respectively. The IBM HTTP Server
supports the use of multiple authentication modules simultaneously.

Alternative Basic Authentication Methods
120 IBM HTTP Server Powered by Apache on RS/6000

AuthName "Protected Material"
AuthUserFile /usr/lpp/HTTPServer/security/users
AuthGroupFile /usr/lpp/HTTPServer/security/groups
Require group rd_group
Order allow,deny
Deny from All
Allow from 1.2.3.4
Satisfy All
...

</Directory>

You may have noticed that the realm name is defined to be the same as in the
previous example (“Protected Material”). This is done in this example
because if the realm names were different and a user from the rd_group
wanted to move from the /Docs/Mktg location to /Docs/RD, he/she would
have to re-authenticate to the server. As long as a user accesses resources
that have the same realm name, he or she is not required to re-enter the user
ID and password.

The example above shows more configuration elements: The /Docs/RD
directory contains information that must not be accessible by anybody except
by members of the rd_group group. Now let’s assume that this Web server is
located outside a firewall, accessible by anybody on the Internet and, through
the firewall, from anybody on the company’s internal intranet. The “Allow from
1.2.3.4” directive only allows accesses from that single IP address, which, in
our example, represents the company’s firewall. This way, although the Web
server is located on the external Internet, the /Docs/RD directory is only
accessible from members of the rd_group group who access the server
through the company’s firewall from within the intranet. This kind of
arrangement requires that anti-spoofing is enabled in the Internet router or
firewall. Anti-spoofing prevents machines from the Internet from
impersonating the firewall machine’s IP address (1.2.3.4 in the example
above).

Security directives can also be specified for specific HTTP methods (such as
PUT, GET, POST), although it is not recommended. The definitions for
methods is done with the <Limit> container. It is easy to leave some method
undefined by accident because there is no wildcard-type method name for all
the other methods that are not specifically defined. If some limitations are
defined, all methods should be remembered to be defined as well. (Note: The
method levels and the Limit container are not covered any further in this book.)

Security Definitions within <Limit> Containers
Deploying Security 121

When the Allow and Deny directives are used, the sequence in which they
appear in the container is important. In the example above, the Allow
directive is processed first, and after that the Deny from all clause defines the
access rights to default to no access. If the Allow, Deny and Require
directives are used within the same container, the Satisfy directive must be
used as well. Satisfy All means that all the requirements must be met, that is
the Allow, Deny and the Require. Satisfy Any would grant access to a user if
any of the requirements was met. One important value for the Satisfy
directive is mutual-failure. Mutual-failure authorizes the client’s request if the
client is listed in the Allow list at least once and it is not listed in the Deny list.

The following example restricts access even more:

<Directory /usr/lpp/HTTPServer/share/htdocs/Dev>
AuthType Basic
AuthName "Development Site"
AuthUserFile /usr/lpp/HTTPServer/security/users
AuthGroupFile /usr/lpp/HTTPServer/security/groups
Require group rd_group
Require user ihsadmin
Order allow,deny
Deny from all
Allow from 1.2.3.4
Satisfy All
...

</Directory>

The /Dev directory is protected such that only the users in the rd_group group
and user ihsadmin are granted access. The realm name is now different
(“Development Site”), so users cannot move from the protected directories
underneath /Docs to /Dev without logging in again.

In the examples above, absolute path names were used for the AuthUserFile
and AuthGroupFile files because using absolute path names lessens the
chance of logical configuration errors. If relative path names were used in the
Directory containers, they would have been relative to the directory specified
by the ServerRoot directive, which represents a security exposure. The path
names of security files like in the AuthGroupFile and AuthUserFile directives
should therefore be absolute.

It is possible to also protect individual files with the <Files> container, but you
should keep in mind to not store any confidential configuration files in the
scope of Web server, even though it can be separately protected.
122 IBM HTTP Server Powered by Apache on RS/6000

6.2.2 Using the .htaccess File
All access control directives described in 6.2.1, “Setting Up Basic
Authentication” on page 119 can also be defined in the .htaccess file. If
.htaccess files are used, the scope of those directives is the directory where
the files reside and the directories below them (unless there is another
.htaccess file). The use of .htaccess files adds a dynamically configurable
security component into the Web site. Changes done to any .htaccess file do
not require the restart of the server or any other administrative action since
the .htaccess is read and interpreted every time any resource is fetched from
a directory (if configured to do so).

The use of .htaccess file is controlled by the AllowOverride directive (see also
4.7.2, “Restricting the Directives within .htaccess Files” on page 60). If the
AllowOverride directive has not been defined within any part of Web server’s
scope, it defaults to AllowOverride All, which is not advisable. In the

The Allow and the Deny directives can have the following values (as
described in the mod_access description in the Apache documentation):

ALL All hosts are granted access.
A (partial) domain-name

Hosts whose names match, or end in, this string are allowed
access.

A full IP address
An IP address of a host allowed access.

A partial IP address
The first 1 to 3 bytes of an IP address, for subnet restriction.

A network/netmask pair
A network address (a.b.c.d), and a netmask (w.x.y.z), for
more fine-grained subnet restriction (example:
10.1.0.0/255.255.0.0).

A network/nnn CIDR specification
Similar to the previous case, except the netmask consists of
the nnn high-order bits (for example: 10.1.0.0/16 is the same
as 10.1.0.0/255.255.0.0).

It is also possible to Allow or Deny access according to the existence or
non-existence of an environment variable. This can be useful for the
implementation of separate authentication methods. An example could be:

Deny from env=NO_ACCESS

Allow and Deny Directives
Deploying Security 123

httpd.conf file that is shipped with the IBM HTTP Server, the AllowOverride
None is included in every <Directory> container. If AllowOverride was not
defined, the server would unnecessarily check for the .htaccess files. Thus, it is a
good idea to define AllowOverride None even when no .htaccess files are used.

The .htaccess file is likely to contain sensitive information like user IDs and
server names that are allowed to connect to the Web server. By definition, the
.htaccess files are located in the Web server’s scope, and may therefore be
accessible from browsers. To protect all .htaccess files in the system, add the
following <Files> container to the httpd.conf file at the top level.

<Files ~ "\.htaccess$">
order deny,allow
deny from all

</Files>

The use of .htaccess files allows you to define multiple things dynamically;
almost any file and directory related directives (except the Directory container
itself) can be defined in an .htaccess file. Before using the .htaccess files, be
sure that you understand the AllowOverride directive (see also 4.7.2,
“Restricting the Directives within .htaccess Files” on page 60).

It is also possible to change the name of the .htaccess file(s) by means of the
AccessFileName directive in the httpd.conf file.

6.2.3 Authentication Files and Databases
User and group authentication information is stored in text files when basic
authentication is used. The IBM HTTP Server ships with a utility called htpasswd
that is located in /usr/lpp/HTTPServer/bin. The htpasswd utility can be used to
maintain the authentication data in the AuthUserFile. The textual password
files are often called flat files.

You can create the AuthUserFile authentication password file while adding
the first user to it as shown below.

htpasswd -c /usr/lpp/HTTPServer/security/users ihsadmin
Adding password for ihsadmin.
New password:

Now you have to define a password for user ihsadmin, which you are about to
create into the /usr/lpp/HTTPServer/security/users file. After that, the
program will ask you to retype the password for verification.
124 IBM HTTP Server Powered by Apache on RS/6000

After adding the first user, the contents of the password file will look
something like:

ihsadmin:6uRBipvs0Jc22

The password file is actually identical to a UNIX password file (and uses the
same password encryption algorithm), except that only the first two fields
(User ID, encrypted password) are used. Further fields as found in a UNIX
password file are ignored. There is a temptation for administrators to simply
use the UNIX password file rather than creating and maintaining a separate
file for Web user authentication. This should never be done because the
UNIX password file contains more information and also sensitive users, such
as root.

The group file is a plain text file that can be crated and edited with a text
editor. Each line in the group file consists of a group name followed by a
colon and a space, and then the user IDs of the group members in a space-
separated list. Here is an example that defines two groups:

mktg_grp: huey dewey louie
rd_group: dale chip

The textual password file is good for occasional use or if there is a small
number of users. If the use is frequent or if it contains a large number of
users, it might slow down the server. For large systems that use basic
authentication extensively, the use of indexed database files as supported by
the mod_auth_dbm module, is favorable.

The dbmmanage utility, a management tool for the DBM authentication
database, is included with the IBM HTTP Server distribution package. It
requires Perl to be installed in the /usr/local/bin directory. The dbmmanage
utility requires the strict.pm and Fcntl.pm Perl modules, as well as the gzip
utility. The dbmmanage utility can be found in the /usr/lpp/HTTPServer/bin
directory.

The dbmmanage utility only requires a few changes to the protection
containers used in the server configuration file(s): the AuthUserFile directives

The -c argument with the htpasswd program is used only when you create
a new password file. If you use the -c argument later by accident to, for
example, add a new user to your password file, the utility will overwrite
your current file.

Note
Deploying Security 125

need to be changed to AuthDBMUserFile and AuthGroupFile must be named
AuthDBMGroupFile.

The usage of dbmmanage is best explained with an example. Creating an entry
into the DBM file can be done with this command:

dbmmanage /usr/lpp/HTTPServer/security/dbmuserfile.pag adduser ihsadmin

The first argument is the name of the DBM database file. If the DBM file does
not exist, it will be created. The second argument is the operation that is to be
performed and the third argument, in this case, is the user ID that is to be
added. The command above inserts the user ID ihsadmin into DBM file
/usr/lpp/HTTPServer/security/dbmuserfile.pag. The command will
subsequently ask for the user’s password. The operations that dbmmanage
accepts are listed in Table 11.

Table 11. Operation Arguments for dbmmanage

More information about dbmmanage can be found in the man page that ships
with the IBM HTTP Server (3.4, “Default File and Directory Structure” on page
37 for an explanation on how to use the man pages).

User authentication in the IBM HTTP Server can easily be combined with other
authentication methods, such as Kerberos or the Distributed Computing
Environment (DCE). There are many authentication modules available for the
Apache Web server that can be used with the IBM HTTP Server as well.

Operation Role

add Adds a user to the DBM file. Requires a fourth argument that is the
encrypted password for the user.

adduser Adds a user to DBM file. Prompts for the password.

check Asks for a password for the user and compares it to the password that is
stored in the DBM file.

delete Deletes a user from the DBM file.

import Imports user ID and password pairs from a textual flat file into a DBM file.
The user IDs and the encrypted passwords must be separated with a
colon (:), as found in UNIX password files.

update Updates the password of the user and checks that the user exists in the
DBM file.

view Shows the selected user ID and encrypted password that are defined in
the DBM file. If no user ID argument is given, it lists all the user IDs in the
database. Can be used to import the user IDs and passwords into a flat
file.
126 IBM HTTP Server Powered by Apache on RS/6000

6.2.4 Performance Impact of Basic Authentication
The exploitation of basic authentication may have an effect on performance.
Since HTTP is a stateless protocol - that is, the Web server does not keep
track of users and their authentication status, the browser needs to send the
user ID and password each times it requests a document from the Web
server.

When the browser requests a protected resource, the Web server returns a
401 error code (Unauthorized) and includes the WWW-Authenticate header.
The WWW-Authenticate header tells the browser which authentication
schemes the Web server supports and the name of the realm that contains
the protected resource. If the user has not already entered a valid user ID and
password for this Web server and realm, the password dialog box is
presented (see Figure 20 on page 120). In subsequent requests, the browser
can find the information from its internal cache or password file. The browser
then requests the same document, but this time with an Authorization header
that includes the user’s ID and password. Thus, each single request actually
creates to requests being sent to the Web server if basic authentication is
involved, which also includes any images that might be included in a page.

Because of this, basic authentication has its impact on performance and
should, therefore, only be used when necessary.

6.3 The HTTP/1.1 Digest Authentication

Digest authentication is an alternative authentication method to basic
authentication. Digest authentication uses the MD5 hash functions to hash
the passwords and other data. The one goal of the digest authentication
method is to have secure authentication without complex algorithms that may
be subject to U.S. export regulations.

Digest authentication is not widely used and, unfortunately, many Web
browsers support it. Mosaic, for example, is one of the rare Web browsers
that support digest authentication. It is, therefore, generally recommended
not to be used unless there are specific reasons.

The basic idea of digest authentication is that the Web server does not store
the user’s password encrypted in its authentication files, but stores MD5
hashes of strings that contain user ID, password, and the authentication
realm name.

When the user requests a protected resource from the Web server, the Web
server returns the 401 (Unauthorized) rejection message, which includes the
Deploying Security 127

authentication method digest that the server requires. The server also sends
a string that is called nonce, which is generally a string that is constructed
from the time of day and the IP address of the requester. If the browser does
not find the user ID and password in its internal cache memory (or password
file) it prompts the user through an authentication dialog box. The browser
subsequently does not transmit the user ID and the password as with the
basic authentication. Digest authentication works as follows:

1. The browser concatenates the user ID, the authentication realm name and
the password, and computes an MD5 fingerprint of that string.

2. The browser concatenates the requested URL and the method for the
request, and computes an MD5 fingerprint of that string.

3. In the third phase the browser concatenates the nonce string with the
fingerprints from the first two steps. After running this string through the
MD5 algorithm, the resulting fingerprint is sent to the Web server.

This fingerprint is sent to the Web server in lieu of a user ID and password
pair.

4. The Web server stores in its authentication file a fingerprint that was
created in an equivalent process as explained in the first step above. This
can be thought of as a user’s password. It concatenates the URL the client
requested and the request method to a string and computes the MD5
fingerprint for the string.

5. The Web server now concatenates the last fingerprint with the same
nonce string it has sent to the browser and computes the MD5 fingerprint
of that string.

6. Access is granted if the fingerprints computed by the browser (step 3) and
the server (step 5) match.

Setting up digest authentication is fairly easy. You should make sure that the
mod_digest module is configured in the server configuration file(s) with a
LoadModule and an AddModule directive. Follow the instructions for basic
authentication, but specify “Digest” as the authentication method as in the
following example:

<Directory /usr/lpp/HTTPServer/share/htdocs/Confidential>
AuthType Digest
AuthName "Protected Material"
AuthDigestFile /usr/lpp/HTTPServer/security/digestusers
...

</Directory>

The authentication file (digestusers in the example above) can be created and
maintained using the htdigest utility that is shipped with the IBM HTTP Server
128 IBM HTTP Server Powered by Apache on RS/6000

(located in /usr/lpp/HTTPServer/bin). The htdigest utility works similar to the
htpasswd utility used for creating and maintaining a password file for basic
authentication (see 6.2.3, “Authentication Files and Databases” on page
124). It requires an additional parameter which is the realm name in the
following example:

htdigest -c digestusers "Protected Material" ihsadmin
Adding password for ihsadmin in realm Protected Material.
New password:

The -c flag indicates that the authentication file is to be created. If it existed
with this name, it will be overwritten. The htdigest utility then asks for the
user’s password twice (for verification) before it adds the user to the file.

6.4 Secure Sockets Layer, SSL

SSL (Secure Sockets Layer) is a widely-used way to implement transport
layer security into TCP/IP communication. SSL was developed by Netscape
Communications Corp. and it is implemented in most Web browsers. The
current version of SSL is 3.0. Microsoft has also introduced a proposal for
securing network transport layer. Microsoft’s PCT (Private Communication
Technology) is not widely used and the only Web browser that supports it is
Microsoft’s Internet Explorer. SSL and PCT are very similar and can even be
used at the same time. But neither of these protocols are declared as an
Internet standard. The IETF (Internet Engineering Task Force) has made an
approach to combine the best aspects of both into a new standard called
TLS, which stands for Transport Layer Security.

When using authentication with virtual hosts, you should use separate
authentication files and separate realm names, regardless of what
authentication method is being used. The directives specific to the
authentication method can be defined in the <VirtualHost> container.

Authentication on Systems Using Virtual Hosts
Deploying Security 129

This book only covers the SSL protocol and the key management issues that
are related to it because SSL has become a de facto standard in today’s
Internet and intranet applications.

6.4.1 Principles of SSL
SSL is a mixture of public-key and symmetric-key cryptography, as well as
hashing. It has been constructed to provide an effective and secure way to
implement transport-layer security. The main reason SSL incorporates both
public-key and symmetric-key cryptography is performance. While public-key
cryptography offers the most desirable functions, it is very
processing-intensive. SSL only uses public-key cryptography for session
initiation, and for data encryption it uses symmetric cryptography for better
performance.

What SSL provides, is:

 • Privacy

 • Authentication

 • Data integrity

The SSL protocol consists of two parts:

 • SSL Handshake Protocol, which is used for the initial authentication and
transfer of the encryption keys between the participants.

 • SSL Record Protocol, which is used for the transfer of actual data using
agreed upon sets of authentication and cipher methods.

SSL uses public-key cryptography in the handshake phase to transfer the
servers public-key to the client. When the SSL connection is established, the
data is encrypted with symmetric cipher using a session key that is derived
from the server’s public key by both parties, and some additional data. Data

The Internet Engineering Task Force is a large, open international
community of network designers, operators, vendors and researchers
whose purpose is to coordinate the operation, management and evolution
of the Internet and to resolve short- and mid-range protocol and
architectural issues. The IETF Secretariat maintains the Internet Drafts and
passes them to Internet Architecture Board (IAB) for final approval.

You can find more information about the IETF by visiting their Web site at
http://www.ietf.org.

What is the IETF?
130 IBM HTTP Server Powered by Apache on RS/6000

integrity is validated by comparing the message digests and hash values that
are sent along with the data.

SSL adds an additional layer between network protocols and the protocols
that are used on the application level. It encapsulates TCP/IP socket so that,
in theory, every application using TCP/IP could use SSL to secure the
connections (Figure 21).

Figure 21. SSL in Relationship with Other Protocols

SSL is usually used for privacy (data encryption) and server authentication.
SSL can optionally be used to authenticate a client by using client
certificates. The client certificates are discussed later in this chapter in 6.5,
“SSL Client Authentication” on page 146.

6.4.2 Establishing the SSL Connection
A simplified explanation of the SSL handshake protocol is shown in Figure 22
on page 132. The numbered steps in Figure 22 are explained thereafter.

Application Protocols

Network Protocols

Application(s)

(WWW, POP, SMTP, E-Mail)

HTTP LDAPSMTP

Security Layer (SSL)

TCP/IP Layer

In the first part of this chapter, the term authentication was used for user
authentication only. SSL provides authentication as well, but primarily for
servers and clients, rather than for users. If secured user authentication is
required, both mechanisms need to be combined; basic authentication for
users, using SSL for a secured connection between the client and the
server. In addition to basic authentication, however, SSL can ensure a user
that he or she is communicating with the server he/she wanted to.

A Word about Authentication
Deploying Security 131

Figure 22. SSL Handshake

1. The client (in this case actually the Web browser running on the machine
to the left in Figure 22) makes a request to get an SSL connection from the
server www.CompanyA.com. The client includes in its request, among
others, a session identifier, list of compression methods and encryption
options that the client supports, as well as a random number that will be
used later. Notice that the URL in the client’s request starts with https
rather than http, which is a request for a secure connection.

2. The server includes in its response the encryption options it supports and
its random number. In addition, the server delivers its X.509 certificate to
the client. The X.509 certificate includes the public key of the server. In
this step, the server can optionally request the client to provide its client
certificate for client authentication (see 6.5, “SSL Client Authentication” on
page 146).

3. The client encrypts the random number it has sent in step 1 and the
random number it has received from the server with the server’s public
key and sends this message (also called pre-master secret) to the server.
The server decrypts it with its private key. If the decrypted numbers match
the originals, it proves that the client must have received the server’s
X.509 certificate (with its public key) correctly.

C

IBM

IBM

IBM

2

3

4

5

6

1

https://www.CompanyA.com/acme.html

C

CipherSpec

Handshake Finished

Pre-Master Secret

Generation of
Master Secret
(Session Key)
132 IBM HTTP Server Powered by Apache on RS/6000

4. Both the server and the client create a hash that will be used as a session
key. This is also known as the master secret and is used later in the SSL
record protocol as a key for symmetric encryption and decryption of data.

5. The client sends a message to the server to announce what cipher options
it is going to use. SSL supports several options that need to be negotiated
between the client and the server before actual encryption can take place.

6. The server confirms the successful handshake phase by sending the first
message encrypted with the session key. From this time on, the cipher
used is symmetrical and contains the message digest.

These steps result in a secured, encrypted connection between the client and
server. Server authentication on the Web is done by the Web browser (client);
if the server’s certificate was not signed by a well-known Certificate Authority,
the browser will alert and ask the user whether or not this server should be
trusted (subject to the browser’s individual configuration). Data integrity is
guaranteed by using the keyed message authentication codes, or MACs. The
keyed message authentication codes are hashes of messages that are
calculated and included with every message during the SSL handshake
process. MAC’s are created with a secure hash functions, like MD5 or SHA-1.

Private key cryptography requires more computation than symmetric-key
cryptography and in SSL it is used only in the handshake protocol
negotiations. The session key for symmetric data encryption/decryption is
calculated and shared between the server and the client.

6.4.3 Cipher Specifications Supported by the IBM HTTP Server
The cipher specifications that are supported by the IBM HTTP Server are
listed In Table 12. Some of the ciphers are not available in the export versions
of the IBM HTTP Server due to U.S. export regulations. The French version has
even more limitations as compared to the common export version. The different
versions of SSL-implementations are marked with a one letter identifier
(U = U.S., E = Common export, and F = French).

Table 12. Cipher Specifications Supported by the IBM HTTP Server

Cipher Specification Number and Name Cipher Used U E F

27, SSL_DES_192_EDE3_CBC_WITH_MD5 Triple-DES (168 bit) x

21, SSL_RC4_128_WITH_MD5 RC4 (128 bit) x

23, SSL_RC2_CBC_128_CBC_WITH_MD5 RC2 (128 bit) x

26, SSL_DES_64_CBC_WITH_MD5 DES (56 bit) x x

22, SSL_RC4_128_EXPORT40_WITH_MD5 RC4 (40 bit) x x x
Deploying Security 133

There is no difference between defining the used cipher specification with the
complete name as shown in Table 12 above, or with the corresponding
number. When cipher specifications need to be defined in the server
configuration file(s) either their specification numbers or their names may be
used (see Table 12). If problems occur, you might want to change the
LogLevel parameter to debug and search log files for messages about cipher
loading failures. Cipher load may fail, for example, when the SSLCipherSpec
name is misspelled or is not valid in a particular export version.

6.4.4 The Alphabet Soup
Throughout the last sections and in the sections that follow, there are many
terms introduced that you might not be familiar with. Here are some terms
that are frequently used in the security literature:

PKCS10 Public Key Cryptography Standard #10 by RSA Data
Security, Inc. A standard that describes a syntax for
certification requests.

24, SSL_RC2_CBC_128_CBC_EXPORT40_WITH_MD5 RC2 (40 bit) x x x

3A, SSL_RSA_WITH_3DES_EDE_CBC_SHA Triple-DES SHA (168
bit)

x

35, SSL_RSA_WITH_RC4_128_SHA RC4 SHA (128 bit) x

34, SSL_RSA_WITH_RC4_128_MD5 RC4 MD5 (128 bit) x

39, SSL_RSA_WITH_DES_CBC_SHA DES SHA (56 bit) x x

33, SSL_RSA_EXPORT_WITH_RC4_40_MD5 RC4 MD5 (40 bit) x x x

36, SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 RC2 MD5 (40 bit) x x x

32, SSL_RSA_WITH_NULL_SHA - x x x

31, SSL_RSA_WITH_NULL_MD5 - x x x

30, SSL_NULL_WITH_NULL_NULL - x x x

Cipher Specification Number and Name Cipher Used U E F

If you have defined log level to be “info” or “debug”, the available cipher
specifications are written to the error log when the SSL module is loaded.

The log level can be changed with the LogLevel directive and the valid
values for it are debug, info, notice, warn, error, crit, alert and emerg.

What Cipher Specs Are Supported in My Server?
134 IBM HTTP Server Powered by Apache on RS/6000

DES DES (Data Encryption Standard) was developed by IBM in
1975. DES is a symmetric block cipher that uses 56 bit
keys.

DES-EDE3-CBC This cipher is also known as Triple DES. In Triple DES,
each block of data is processed three times with at least
two different keys. With Triple DES, the possibility to use
brute-force to crack the message is minimized.

EDE3 Encryption - decryption - encryption with three keys. The
message is processed three times. First encrypted, then
decrypted and once more encrypted. Each step is
performed with a different key. There is also a EDE
method that uses two keys, in which case both
encryptions are done with the same key. This method is,
for example, used in the export versions of SSL
implementations.

CBC Cipher Block Chaining is used to chain encrypted blocks
into a stream. The ciphers like DES and RC2 usually
encrypt the messages in fixed size blocks (often 64 bit).

RSA Named after its creators, Rivest, Shamir and Adleman.
RSA was one of the first effective public-key algorithms.
RSA is used to encrypt messages and create digital
signatures. RSA is an asymmetric cipher. RSA is also
often referred to in the context of RSA Data Security Inc.,
which is the company founded in 1992 by the same
people.

RC2 RC2 (Ron’s Code 2 or Rivests Cipher 2) was RSA Data
Security’s proposal to be a successor of the DES cipher. It
is faster and provides stronger security. It is also a
symmetric block cipher, but the key length can be variable
in the range from 1 to 128 bits. It can be used in the same
modes as DES, including triple cipher.

RC4 RC4 is a symmetric stream cipher from RSA Data
Security, Inc. RC4 can use keys of up to 2048 bits in
length. However, the key length can be limited to meet
U.S. and other export or governmental regulations.

SHA-1 Secure Hash Algorithm that is adopted as Federal
Information Processing Standard (FIPS). SHA-1
generates 160 bit fingerprints.
Deploying Security 135

MD5 Message Digest algorithm. MD5 is a hash algorithm that
generates 128 bit fingerprints. It is slightly faster than
SHA-1.

BASE64 MIME encoding scheme that converts binary data into
7-bit ASCII. It is used, for example, for transferring binary
data in mail.

DER Distinguished Encoding Rules. Rules that define a
presentation format of binary data.

X.509 An International Telecommunication Union (ITU)
recommendation for the format of certificates.

6.4.5 Creating a Self-Signed Certificate
Self-signed certificates are certificates that are created without involving an
external, trusted Certificate Authority (CA). Self-signed certificates might not
be usable with all Internet browsers, and the use of them should be limited to
testing purposes and situations where the “official” certificate from the
Certificate Authority (CA) is not yet received. Web browsers usually notify
users about the non-trusted issuer when accessing a site that uses the
self-signed certificate. The user then has the choice of accepting or rejecting
the connection to such a server.

IBM provides an application with a graphical user interface for managing the
SSL key database(s). A key database is a file which includes root certificates
of well-known Certificate Authorities and also the SSL-keys that are issued to
the system. The key database is protected with a password that is the key to
manage all the key information in the key database. IKEYMAN is a Java
application that comes with the IBM HTTP Server for handling the key
management procedures. Although it is not necessary to run the IKEYMAN
utility as root user, it is preferable because the managed keyfiles are owned by
the user who starts the IKEYMAN application. Since IKEYMAN is a graphical
application, it must be run on a graphical display.

Before you can start IKEYMAN, you have to define the environment variable
JAVA_HOME

export JAVA_HOME=/usr/jdk_base

The IKEYMAN application is started with the command:

/usr/bin/ikeyman &

In order to create a self-signed certificate, you have to first create a key
database for it:
136 IBM HTTP Server Powered by Apache on RS/6000

1. The key database is created by selecting Key Database File -> New... as
shown in Figure 23.

Figure 23. Creating New Key Database with IKEYMAN

2. In the upcoming New dialog, select the CMS key database file from the
list of key database types and type in the name and location for the file
and click OK.

The file extension of the key database file should be .kdb.

The location for the kdb file can be freely chosen. In the examples shown
here, the key database file CompanyA.kdb is located in the directory
/usr/lpp/HTTPServer/keys. If the server will be started as root user, you
might want to cut down the access permissions to that directory with the
commands:

chown root.system /usr/lpp/HTTPServer/keys
chmod 0700 /usr/lpp/HTTPServer/keys

3. The password dialog box opens, and you are asked for a password for this
database. You might want to define and record the expiration time for the
key database. Click the “Stash the password to a file?” checkbox. If the
password is not stashed into a file, the Web server will not be able to start
automatically. If you do not stash the password to file, you are asked for it
Deploying Security 137

when you start the server. Click OK, and IKEYMAN displays the contents
of the key database in the application window. The new key database is
not empty. It contains information about some well-known Certificate
Authorities already.

The password should be selected carefully, because all the key
management operations including deletion of the keys depends on it.

SSL will not work anymore after either the certificate itself expires or the
key database password expires. In the latter case, the server’s error log
contains an error message like “GSK could not initialize, Unrecognized
error code returned from GSK.”

4. Select Create -> New Self-Signed Certificate... as shown in Figure 24.

Figure 24. Creating a Self-Signed Certificate

At this point, you have to remember that even if you are creating this
key database for testing purposes only, you might someday want to add
a production key into it. To ensure adequate security, a good password
should be used. Also the password expiration should be defined.

Note
138 IBM HTTP Server Powered by Apache on RS/6000

5. Fill in all information about the organization (see Figure 25 on page 139).
This information is available to anyone who accesses the site using this
certificate and it should therefore contain valid, representative information
about your organization. Then click OK to create and save the certificate.

Figure 25. Filling in the Certificate Information

Information about your organization in a certificate is proof of your identity to
the user accessing the Web site. However, if you have a self-signed
certificate, it’s just your word of it.

6.4.6 Using Certificates Signed by a Well-Known Trusted CA
When the key database has been created as described in the previous
chapter, it is preconfigured with the root certificates of the most often used
certificate authorities. These are:

 • Integrion Certification Authority Root
 • IBM World Registry Certification Authority
 • Thawte Personal Premium CA
 • Thawte Personal Freemail CA
 • Thawte Personal Basic CA
 • Thawte Personal Server CA
 • Thawte Server CA
 • RSA Secure Server CA (can also be obtained from Verisign)
 • VeriSign Class 4 Public Primary CA
Deploying Security 139

 • VeriSign Class 3 Public Primary CA
 • VeriSign Class 2 Public Primary CA
 • VeriSign Class 1 Public Primary CA
 • Verisign Test CA

Verisign offers a possibility to use a test certificate which is signed according
to their own root certificate. It is intended only for testing purposes. There are
no other test certificates preconfigured and if you plan to test some other CA’s
test certificates, their root certificate have to be inserted into the key
database first. This procedure is described in section 6.4.7, Requesting a
Certificate from an Unknown CA on page 142.

The following section describes the procedure to request certificate from the
Certificate Authorities whose root certificates are predefined in the key
database.

6.4.6.1 Requesting a Certificate from a Known, Trusted CA
Requesting a “real” certificate for your server has its price. For example, at
the time of writing, such certificates cost several hundred U.S. dollars,
depending on whether they are valid in the U.S. only or internationally. The
certificate is valid for one year and renewing of the certificate is usually less
expensive. The Certificate Authorities have some requirements for a
company or organization that is requesting the certificate.

Here are the directions of how to request a certificate from trusted Certificate
Authority:

1. Launch the IKEYMAN application and open the key database you have
created.

2. Choose Personal Certificate Requests from the pull down list in the
middle of the application window as shown in Figure 26. Click on the
New... button in the button list that appears on the right.
140 IBM HTTP Server Powered by Apache on RS/6000

Figure 26. Selecting the Personal Certificate Requests Setting

3. On the dialog that appears, enter the key label for the certificate and fill in
the other information about your certificate. You can choose from two key
lengths: The 512 bit key size is sufficient for most applications unless
maximum security is required. A key of 1024 bit size, on the other hand,
requires more processing power, which might be a performance factor.

4. Specify the directory and file name for the certificate request. The file type
with extension .arm is PKCS 10 type file in armored 64 bit format. The
private key is stored to the directory that contains your key database files.
The file name extension of the stored private key database is .rdb. The file
locations or file names of these files should not be changed.

5. Follow the Certificate Authority’s instructions of how to submit the
certificate request to the certifier.

6. When you receive the certificate from the CA, the key has to be imported
into your key database. To do so, launch the IKEYMAN application and
open the key database.

7. Select Personal Certificates from the pull-down menu and click the
Receive... button on the right. The Receive Certificate from a File dialog
appears (see Figure 27 on page 142).
Deploying Security 141

Figure 27. Receive Certificate from File

8. Enter the certificates file name and location and click OK.

9. Highlight the new certificate on the list of Personal Certificates and click
View/Edit... The Key information dialog appears.

10.If not selected, select Set the certificate as the default checkbox. If you
have some other software that uses the same key database, this change
may affect them.

The certificate is now ready for use. Do not forget to add a reminder to your
calendar when the key database password or certificate is going to expire.
Some of the CAs send e-mail about a month before the certificate expires.

6.4.7 Requesting a Certificate from an Unknown CA
When acquiring a certificate from an unknown certification authority, you have
to obtain it’s root certificate first and store it in your key database. The term
unknown CA does not mean anything about the reliability or trustworthiness
of the CA, but that the CA’s root certificate is not preconfigured in the key
database.

6.4.7.1 Storing the Root Certificate of the CA
The procedure to request and configure a certificate from an unknown CA is
basically the same as with well-known CAs (see 6.4.6, “Using Certificates
Signed by a Well-Known Trusted CA” on page 139). Prior to obtaining the
certificate, you have to get the root certificate of the CA. The CAs provide the
information on how to obtain it. The root certificate must be stored in the key
database before the certificate. Make sure that the root certificate is in
BASE64 armored ASCII data format.

1. Start the IKEYMAN application and open your key database. Select
Signer Certificates from the pull-down list as shown in Figure 28 on page
143.
142 IBM HTTP Server Powered by Apache on RS/6000

Figure 28. Selecting Signer Certificates in IKEYMAN

2. Click on the Add... button to add CA’s root certificate from a file.

3. On the pop-up dialog, verify that the file type is Base64-encoded ASCII
data. Fill in the location and file name of the certificate file.

4. Click OK to mark the certificate trusted and to store it.

After completion, the new root certificate will show up in the Signer
Certificates list. The root certificate is now available to every certificate you
intend to include in this key database.

6.4.7.2 Storing the Certificate that is Signed by an Unknown CA
The root certificate you obtained acts like the root certificate of any known
signer. In order to store the signed certificate into your key database, you can
follow the instructions in 6.4.6.1, “Requesting a Certificate from a Known,
Trusted CA” on page 140.

6.4.8 Configuring the HTTP Server to Use SSL
In the standard server configuration file (httpd.conf) that is shipped with the
IBM HTTP Server, there are some directives you should check before starting to
configure it. The ServerAdmin directive points to a dummy e-mail address
Deploying Security 143

you@your.address and the ServerName is commented out. It is recommended
to use a valid e-mail address for ServerAdmin, and SSL configuration
requires that the ServerName directive matches the fully qualified host name
of your server, such as www.CompanyA.com.

The minimum configuration changes that need to be done are:

 • Definitions for loading the mod_ibm_ssl module

 • Port number for the SSL virtual host

 • Definition for the SSL virtual host

 • Keyfile location

 • SSL timeouts

The default port number for SSL is 443. In order to achieve this, defining a
virtual host comes in handy. When editing the httpd.conf file, keep in mind
that comments within the configuration sections are not allowed.The following
actions guide you through these steps:

1. First add the following row into the httpd.conf file as the first item of the
LoadModule list:

LoadModule ibm_ssl_module libexec/mod_ibm_ssl.so

2. Add the following row as the first line to the AddModule list:

AddModule mod_ibm_ssl.c

3. Add the port number for the virtual server just below the “Listen 80”
statement. The default port number for SSL is 443.

Listen 443

4. Check that you have defined the ServerName directive:

ServerName www.CompanyA.com

Add following text-block to the end of the httpd.conf:

<VirtualHost :443>
SSLEnable
SSLClientAuth none
DocumentRoot /www/html/CompanyA
ErrorLog /www/logs/CompanyA/error_log
TransferLog /www/logs/CompanyA/access_log

</VirtualHost>
SSLDisable
Keyfile /usr/lpp/HTTPServer/keys/CompanyA.kdb
SSLCacheEnable
SSLCachePortFilename /usr/lpp/HTTPServer/tmp/siddfile
144 IBM HTTP Server Powered by Apache on RS/6000

SSLV2Timeout 100
SSLV3Timeout 1000

SSLClientAuth should be set to none in cases where there is no client
authentication (see also 6.5, “SSL Client Authentication” on page 146).

5. Save the file and restart the server.

apachectl graceful

The SSL timeout parameters are related to caching of the SSL session IDs.
SSL session IDs should be cached in order to reduce the expense of
repeating SSL handshaking. The IBM HTTP Server uses an internal daemon
process sidd to cache the SSL session IDs to a file that is accessible by the
HTTP server processes. Make sure that the file and the directory, defined in the
directive SSLCachePortFilename, is writable by the user the server processes
ran under.

6.4.9 SSL and Virtual Hosts
Running multiple virtual hosts that support SSL can be done with the IBM
HTTP Server by defining IP-based virtual hosts (see also 5.1, “Virtual Hosts”
on page 71). You are limited, however, to only one key database that must
include all certificates that are used. The certificate file is specified with the
SSLServerCert directive.

The following example defines two Web sites in the same httpd.conf file. This
requires four VirtualHost containers to be defined in order to have it working:

<VirtualHost 1.2.3.4>
ServerName www.CompanyA.com
ServerAdmin webmaster@CompanyA.com
DocumentRoot /www/html/CompanyA
ErrorLog /www/logs/CompanyA/error_log
TransferLog /www/logs/CompanyA/access_log

</VirtualHost>

<VirtualHost 1.2.3.5>
ServerName www.CompanyB.com
ServerAdmin webmaster@CompanyB.com
DocumentRoot /www/html/CompanyB
ErrorLog /www/logs/CompanyB/error_log
TransferLog /www/logs/CompanyB/access_log

</VirtualHost>

<VirtualHost 1.2.3.4:443>
SSLEnable
SSLClientAuth none
Deploying Security 145

SSLServerCert Company A
ServerName www.CompanyA.com
ServerAdmin webmaster@CompanyA.com
DocumentRoot /www/html/CompanyA
ErrorLog /www/logs/CompanyA/error_log
TransferLog /www/logs/CompanyA/access_log

</VirtualHost>

<VirtualHost 1.2.3.5:443>
SSLEnable
SSLClientAuth none
SSLServerCert Company B
ServerName www.CompanyB.com
ServerAdmin webmaster@CompanyB.com
DocumentRoot /www/html/CompanyB
ErrorLog /www/logs/CompanyB/error_log
TransferLog /www/logs/CompanyB/access_log

</VirtualHost>

SSLDisable
Keyfile /usr/lpp/HTTPServer/keys/Keyfile.kdb
SSLV2Timeout 100
SSLV3Timeout 1000

The SSLServerCert specifies the certificate label to be used for a specific
virtual host. A requirement for the use of SSL in multiple Web sites in the
same machine is that you have to use the IP-based virtual hosts.

6.5 SSL Client Authentication

Client authentication is an option that is not normally used unless there is a
particular reason. In order to get authenticated during the SSL handshaking
process, the client must have a client certificate. Most of the well known
Certificate Authorities also sign personal client certificates. A client certificate
is a binary file which has the information about its owner in an X.509
certificate format.

The file httpd.conf.sample.ssl that ships with the SSL module of the IBM
HTTP Server contains a wealth of information in the the form of comments
that further explain the setup of SSL, including client authentication
(subject to the next section). This file is located by default in

Note
146 IBM HTTP Server Powered by Apache on RS/6000

The Certificate Authority needs to have some information about an individual
in order to create a certificate. The certification process is usually quite
straight forward. The CA usually require a name, nationality, maybe some
postal information, and an e-mail address. Some CAs, like Thawte, require a
social security number or a citizen number, depending on the country of
residence or citizenship. Common to most (or even all) of the international
CAs is that the only identifying information that connects the user to
certification process is the e-mail address. A client certificate incurs some
fees, but they are relatively cheap, that is, in the area of about 10 US dollars.
Client certificates are usually valid for one year. After that, the certificate must
be renewed.

Table 13 lists the attributes that are contained in an X.509 certificate.

Table 13. Attributes Included in the Client’s X.509 Certificate

The need for client authentication and the level of identification depends
greatly on the needs of Web site owners. For example, the owner of a Web
site that needs to be very certain about the identity of the individuals who
have access to their Web page might choose to run their own CA software

Attribute Shortname Definition

CommonName CN The client’s common name

Org O The organization of the client

OrgUnit OU The organizational unit of the client

Locality L The locality in which the client resides

StateOrProvince ST The state or province in which the client
resides

Country C The country in which the client resides

Email E The e-mail address of the client

IssuerCommonName ICN The CA’s common name

IssuerOrg IO The organization of the CA

IssuerOrgUnit IOU The organizational unit of the CA

IssuerLocality IL The locality in which the CA resides

IssuerStateOrProvince IST The state or province in which the CA resides

IssuerCountry IC The country in which the CA resides

IssuerEmail IE The e-mail address of the CA
Deploying Security 147

and issue the certificates according to their own policies. A financial institute
would probably require application by person and hand signature before they
issue a certificate to their customer.

The IBM HTTP Server supports client certificates issued by any CA software that
is capable of issuing X.509 certificates. If you are going to use certificate
revocation lists (CRL), the IBM Vault Registry is suitable to provide that
function. The CRL is a database of certificates that are revoked before their
expiration date for any reason. You can find more information about the IBM
Vault Registry at http://www.software.ibm.com/commerce/registry.

6.5.1 Client Certificates and the IBM HTTP Server
The IBM HTTP Server supports three levels of SSL client authentication. The
directive that controls the client authentication level is SSLClientAuth and it
accepts the values required, optional, and none.

If you choose required, only users with valid certificates that are signed by a
trusted CA are granted access. The optional value causes the server to ask
for the client certificate, but it is not necessarily required. This option is often
used to allow more specific authentication for certain administrative users.

The use of client authentication adds some complexity to the authentication
process and increases the network traffic (and thus server load), and should
therefore only be used if specifically required.

There are two types of access control that can be used in conjunction with
SSL client authentication. The first, fake basic authentication, uses the client
certificate’s distinguished name as the user for normal basic authentication.
The fake basic authentication functionally is deprecated and should not be
used if possible as it does not provide effective authentication. The directive
to specify the fake basic authentication is SSLFakeBasicAuth. The better
alternative to client authentication is to use the SSLClientAuthRequire
directive.

The SSLClientAuthRequire provides the whole variety of X.509 attributes to
be used in the Web server and allows complex logical comparisons of the
certificates information.

The SSLClientAuthRequire directive supports conditional expressions such
as in the following example:

SSLClientAuthRequire (CommonName = "Chip Nut" OR CommonName = "Dale Nut")
AND Org = "Company A" AND OrgUnit = "Research and Development"

Or, more compactly, using the shortnames:
148 IBM HTTP Server Powered by Apache on RS/6000

SSLClientAuthRequire (CN = "Chip Nut" || CN = "Dale Nut") && O = "Company A"
&& OU = "Research and Development"

The Web server accepts the client certificate only if it is signed by a CA
whose root key is marked as a trusted root in the server’s key database. The
CA’s root key is marked trusted when the certificate is listed under the signer
certificates and when selected with the View/Edit..., the Set the certificate
as a trusted root checkbox is selected as shown in the following Figure 29.

Figure 29. Marking/Checking a CA’s Root Certificate as Trusted

6.6 Security Considerations in the Server Configuration File

The IBM HTTP Server is usually started under root authority because UNIX
systems limit the access to port numbers that are smaller that 1024 only to the
root user. When the server is started, it launches the actual HTTP server
processes under the user ID that is defined in the server configuration file
(httpd.conf). All file accesses, including execution of CGI programs, are done
with the permissions of this user.
Deploying Security 149

The file ownerships and access rights should be strictly controlled in the Web
servers scope and in the areas where configuration files and binaries reside.
As a rule of thumb, all configuration files and binaries (other than CGI
programs) should not be accessible by the user under which the HTTP server
runs. Furthermore, the log files and the directories where they reside should
not be changeable by that user because the log files are potentially the first
thing a possible hacker would want to delete or alter.

There are some security considerations in the httpd.conf file. As has been
mentioned earlier in 3.6, “Initial Setup” on page 42, the server should not be
run under the user account nobody because there are other processes using
the same account. The best approach is to define dedicated user and group
for running the server processes.

As discussed before, you should beware of symbolic links that can easily and
inadvertently enlarge the scope of the server. The Directory options to look
for are FollowSymLinks and SymLinksIfOwnerMatch.

Server side includes (SSI, see also 10.4, “Server-Side Includes” on page
219) provides the possibility to execute some local programs via HTML
pages. This can be a good feature for some occasions, but you might want to
deny the execution by defining:

Options IncludesNOEXEC

It might also be wise to restrict the execution of CGI scripts to certain
directories (see also 10.2, “CGI Programs” on page 214).

The use of the .htaccess files can also be controlled. One way to deny all the
.htaccess overrides, includes and accesses is to create a directory container
for the root directory of the server:

<Directory />
AllowOverride None
Options None
Allow from all

</Directory>

You might also consider denying the access to the root directory by changing
the “Allow from all” above to:

Order deny,allow
Deny from all

That kind of access control denies access to all locations except to the ones
that are specifically allowed in other directory or location containers. The
sequence to parse the containers is Directory, Files and Location. Beware of
150 IBM HTTP Server Powered by Apache on RS/6000

such situations where you accidentally override some restriction you have
defined in the directory container by adding an improperly defined location
container.

As discussed in 5.3, “User Directories” on page 85, the UserDir directive can
also cause some security exposures if it applies to the root user. This can be
avoided by defining:

UserDir disabled root

Another issue that ought to be mentioned is to define CoreDumpDirectory
directory. A core dump usually is created when an application aborts. The
core dump is used for debugging purposes and it contains, among other
things, the memory environment of the server. This file may contain, for
example, some passwords or other sensitive information. The core dump is
written by default to the ServerRoot directory, which creates two risks. First, a
core dump file might fill up the file system and disturb the stability of the Web
server. Second, since the core file is within the server’s scope, a Web user
could download files such a core file and examine its contents. You should
therefore direct the core file to a directory outside the server’s scope where
disk space is not an issue, or even to /dev/null (if you do not intend to use
them for analysis) as in this example:

CoreDumpDirectory /dev/null
Deploying Security 151

152 IBM HTTP Server Powered by Apache on RS/6000

Chapter 7. Performance and Scalability

There are many benchmarking-type performance tests done in the market to
persuade and convince consumers that each product stands out from others.
In this chapter, no actual performance data is measured or published (it is
widely known that Apache is a well-performing Web server). Rather, some
reminders are given to webmasters who wish to pay attention to the health of
their Web servers, as well as recommendations for configuring the IBM HTTP
Server to improve the overall performance of the Web server. Absolute
performance figures depend on many factors that would barely meet the
needs of any particular environment. Some tools that are available for
performance monitoring are also introduced. In addition, a discussion
pertaining to the scalability issue is presented for webmasters who wish to
expand their Web servers to a bigger audience.

7.1 Basic Performance Consideration

Figure 30 shows computers connected to the Internet on both the provider
and the client sides.

Figure 30. Basic Internet Connection

Internet

Web Server

Clients

Web Server Environment Client Environment
© Copyright IBM Corp. 1999 153

The three main components necessary for a Web server are the Web server
hardware and operating system, the Web server software (the IBM HTTP
Server in this case) and the link to the network (Internet). Inevitably, these are
also the three main factors that contribute to the overall performance of the
Web server, as discussed in the following sections.

7.1.1 Link Bandwidth
The closest component to the network (Internet) from the Web server is the
link, as shown in Figure 30 on page 153. At present, there are many options
on the market that provide fast connections for Web servers. Typical values
used by major networks and ISPs are ISDN lines running at 128 Kbps, T1
lines catering to a speed of 1.5 Mbps, or the T3 lines offering 44.7 Mbps. The
choice of the lines used determines the speed of incoming and outgoing
traffic, which affects the response time of the Web server at the end user’s
workstation. A wider throughput generally gives a faster response time from
the Web server, assuming that the Web server itself is not the major
bottleneck. However, when compared to the speed of the network
environment the Web server is connected to, the link is more often the
hindering factor.

If the Web server is not connected to the Internet, but only to a
corporate-internal intranet, network connections are usually faster since the
server has a more direct network connection. It is still wise, however, to
estimate and measure the network traffic to and from the Web server
because it might be close to the upper limit of a normal Ethernet connection,
which is 10 Mbps. Particularly when there are a number of machines
connected to the same network segment, the network can easily become
saturated. In fact, most modern RS/6000 hardware is easily capable of
saturating a 10 Mbps link when simply providing static HTML page serving as
a Web server. It is, therefore, certainly worth connecting it directly to a
high-speed backbone network, such as an ATM or a 100 Mbps Ethernet link,
if high volume traffic is anticipated.

7.1.2 Hardware and Operating System
Basically, these two areas are closely related since the operating system
forms the logical hardware abstraction layer between the hardware devices
and the Web server, as shown in Figure 31 on page 155. Any requests for
files or the execution of programs by the Web server requires the use of the
hardware resources. Thus, these areas can be considered with the operating
system to enable better performance of the entire server machine.
154 IBM HTTP Server Powered by Apache on RS/6000

Figure 31. Factors Affecting Performance of a Web Server

A typical Web server usually only requires a system with a single processor
and a limited amount of memory and hard disk storage space. However,
companies may not purchase a dedicated Web server machine for providing
electronic information to their clients, unless they are in the ISP area of
business, or have a large number of clients. Thus, in small environments, the
Web server may have to share CPU, memory, disk, and network resources
with other applications and the operating system running on the same
machine.

In the following sections, we will briefly explain the importance of each of
these components. A more thorough analysis can be found, for example, in

Operating System

Web Server Software
(HTTP Daemon)

Disk Storage
Memory

CPU

Child ChildChild

Network

The Web Server

(httpd) (httpd) (httpd)

Network Interface
Performance and Scalability 155

the redbook Understanding IBM RS/6000 Performance and Sizing,
SG24-4810, or in the IBM AIX Performance Tuning Guide, SC23-2365.

7.1.2.1 CPU
The CPU is mostly used for client request processing and in the rare instance
when the IBM HTTP Server parent process spawns new child processes to
handle a new request. Client-request processing can be as easy as simply
delivering a static HTML page, or it can involve a considerable amount of
application code. Depending on the amount of extra processing necessary for
client requests, the CPU can be a limiting factor, although in many cases the
CPU is not the dominating bottleneck of a Web server machine.

Spawning new child processes can slow down the operation of a Web server
if it happens too often. The IBM HTTP Server keeps a certain number of httpd
processes running that can process client requests in parallel (see also 3.7,
“Server Process Structure” on page 43). The minimum and maximum number
of these httpd processes, along with other, related numbers, can be
configured (see 7.1.3.1, “Process Handling” on page 158). If the configuration
is balanced, there should not be many httpd processes spawned over time in
normal operation and, therefore, the Web server performance is not
considerably affected by spawning new processes. Process spawning may
become more of an issue when CGI programs and application code is
involved. Please read 10.2.3, “CGI Performance Considerations” on page 217
for more information.

For machines that are required to handle heavy Web serving functions, as
well as other applications, database or programs that are CPU-intensive, a
multiprocessor system may be considered. Programs can then run
concurrently in these machines and not be held back by Web processes. The
IBM HTTP Server will use all CPUs in a multiprocessor system. On the other
hand, webmasters are reminded that multiple processors do not always
increase the performance tremendously because other common resources,
such as memory, disk storage, and network connections are still shared by all
processors and programs. Please refer to 7.3, “Scalability for the IBM HTTP
Server” on page 171 for further discussions.

7.1.2.2 Memory
Together with the raw performance of the CPU, the amount of available
physical memory greatly affects Web server performance. There should be
enough physical memory available that the system does not need to start
paging (see the next section). The amount of memory that is necessary to
fulfill this requirement greatly depends on the following factors:

 • Requirements of any other application running at the same time
156 IBM HTTP Server Powered by Apache on RS/6000

 • Number of httpd processes that are running at any given time (see 7.1.3.1,
“Process Handling” on page 158)

 • Number and size of DSO modules loaded with the IBM HTTP Server

 • Requirements of any Web applications that might be started through the
Web server

Note: The amount of additional memory required by DSO modules is not only
dependent of the number and size of those DSO modules, but also on the
number of httpd server processes that are running at the same time since
each httpd server process may instantiate the DSO modules.

7.1.2.3 Paging Space
Paging space should not affect a Web server. In other words, there should be
enough physical memory available that the server does not need to page.
Paging activities should be avoided since it may degrade online performance
of a Web server drastically for two reasons:

1. An otherwise runnable process may have to wait some time for a missing
page to be read in from the paging space.

2. The disk I/O performance may be seriously affected by excessive paging.

However, should paging occur, the paging space(s) on the disk(s) should be
placed so that the least impact on performance results. The three most
important rules for paging space allocation are:

 • Have a paging space on every disk in the system (provided they have
about the same average access time).

 • Only use one paging space per disk. Multiple paging spaces per disk
reduce paging performance.

 • Check the characteristics of each disk and define the paging space at the
best-performing place (usually center or edge, depending on disk model).

7.1.2.4 DIsk I/O
The amount of disk I/O that takes place in a Web server heavily depends on
the specific environment. Some Web servers only serve static HTML
requests, while others do extensive application processing. Thus, there is no
general rule stating that disk I/O is the predominant bottleneck in a Web
server. In many cases, disk I/O is not a critical issue. However, if heavy disk
I/O is expected or observed, follow these guidelines to tune this subsystem:

 • Having additional memory in the system reduces disk I/O through AIX disk
caching for read accesses.
Performance and Scalability 157

 • Distributing the data among several disks reduces the average seek and
access time as opposed to having all data on a single disk.

 • If SCSI disks are being used, there should be no more than two to three
disks per SCSI adapter.

 • Use fast disk subsystems, such as SSA (Serial Storage Architecture).

 • Follow the pertinent guidelines of any applicable database subsystem.

7.1.2.5 Network I/O
The most commonly used network interface adapters today are of Ethernet
standards, with speeds of either 10 or 100 Mbps. In many cases, this
theoretical value is considerably more than what the actual link can offer. The
actual link speed available to a Web server depends on the capabilities and
configuration of the network components and the network topology. The
slowest link in a network will determine the overall throughput between two
systems. Network interface tuning involves the settings for the number and
sizes of interface buffers available to the operating system. AIX has a
self-tuning mechanism for network buffers that works perfectly in most cases.
However, if network I/O needs to be tuned to its very best, you should consult
pertinent manuals, such as the AIX Performance Tuning Guide, SC23-2365.

7.1.3 The Web Server
The IBM HTTP Server in Figure 31 on page 155 resembles an inverted
version of the Apache server model shown in Figure 1 on page 17, which
illustrates the two important phases: the configuration phase and the request
parsing phase. The performance issues for the Web server mostly emphasize
the configuration settings in the IBM HTTP Server’s configuration file,
httpd.conf, which affects the nature of the Web server after it is initialized and
when it is serving the client requests in the request parsing phase. The following
sections group some directives into specific categories that are relevant for the
performance of the IBM HTTP Server.

7.1.3.1 Process Handling
The process-handling phase is largely dependent upon the configuration
made by the webmasters in the httpd.conf file before starting the IBM HTTP
Server. Thus, at this stage, prior considerations should have been made by
the webmasters, and these decisions vary with different operation
environments. This category contains directives that are mostly related to the
httpd processes (see also 3.7, “Server Process Structure” on page 43).

MaxClients — Restricts the maximum number of child httpd daemons
created that can process client requests in parallel. If the value is too low,
158 IBM HTTP Server Powered by Apache on RS/6000

clients are locked out and placed in a limited queue determined by another
directive (see ListenBacklog). If this is the case, the next client request can be
served only when any child httpd process has finished processing a current
request. Alternatively, a value that is too large may incur memory resource
overheads and the Web server begins to swap, thus decreasing performance.
A general method of calculation is shown below:

MaxClients = Total memory available to the IBM HTTP Server / memory
consumption for each child httpd

The default value is 150.

MaxRequestsPerChild — Restricts the number of requests handled by each
child httpd daemon. Once this value is hit, the child process terminates. One
of the intentions of this parameter is to limit the lifetime of an httpd client
process in order to prevent it from using too much memory resource in case
of memory leaks. A zero value results in an infinite lifetime of the child
process. This is not advisable for the reasons mentioned above. The number
specified can be fairly high (the default is 10.000.000) if stable operation is
expected.

MaxSpareServers — Specifies the upper number of idle httpd child
processes which are not handling any requests. The parent process that
spawned these processes will kill all excess idle processes if the number of
existing idle processes are higher than this value. If the machine is dedicated
for Web serving purposes, a high value can be set to provide good response
times. On the other hand, if the machine provides other functional roles or
has relatively low memory resources available, a lower value should be set to
keep resource consumption low. The default is 10.

Please read the General Guidelines at the end of this section for more
discussion on this topic.

MinSpareServers — Specifies the lower number of idle httpd child processes
which are not handling any requests. The parent process that spawned these
processes will create more processes at a maximum rate of 1 child per
second if the number of existing processes is lower than this value. If the
machine is dedicatedly used for Web serving purposes only, a high value can
be set to provide good response times since more processes are spawned in
advance to quickly handle client requests, especially in situations where the
Web server encounters burst loads. If the machine has little memory
resources available, this value should be kept low. The default is 5.

Please read the General Guidelines at the end of this section for more
discussions.
Performance and Scalability 159

StartServers — Specifies the number of httpd child processes to be created
at startup. There must be at least one child process to handle requests. If the
load is heavy, set the values for StartServers, MaxSpareServers and
MaxClients close. Otherwise, keep the number small if the MaxSpareServers
value is set low, because the spare processes that are spawned will
ultimately be killed before they are even utilized. The default is five.

Please read the General Guidelines at the end of this section for more
information.

ListenBacklog — Restricts the maximum length of the queue of pending
connections from the clients. The value is limited to the operating system that
uses the listen() system call, but it may be increased when required. The
default value is 511 and generally requires no tuning.

7.1.3.2 Connection Issues
The directives discussed in this category focus on the persistent connection
(also known as KeepAlive) feature in the HTTP/1.1 specification. This feature
is designed to reduce the number of times a client needs to establish a new
connection when transferring documents with multiple components, such as
multiple images. The IBM HTTP Server supports this feature via the KeepAlive
directive and thus allows multiple requests to be sent across the same
connection. Besides the server configuration, webmasters must also be
aware of the browsers’ behavior when responding to persistent connections,
which, however, is not related to performance of the Web server and thus is
not within the scope of this discussion.

The three directives MaxSpareServers, MinSpareServers and StartServers
are closely related because they control the number of httpd processes
running on the Web server. Basically, adjustments should only be applied
to very busy sites and considerations should be made in these three areas
regarding the operating system, the number of preloaded modules and the
machine load. If the machine load is high, increase the MinSpareServers
and StartServers directive values, but generally the values should not be
set too high for all these directives. A good idea is to set the
MinSpareServers and MaxSpareServers directives to similar values, or
even the same value. A value for the MaxSpareServers directive close to
that of the MaxClients (mentioned above) results in an optimized response
time since it minimizes the chance that a new process needs to be
spawned prior to client request processing.

General Guidelines
160 IBM HTTP Server Powered by Apache on RS/6000

MaxKeepAliveRequests — Restricts the number of requests allowed per
connection. A zero value grants an unlimited number of requests, which is not
advisable since the process serving this client will be held up while keeping
the connection open. According to the type of documents to be served,
webmasters should consider an appropriate value to ease the incoming
request traffic and also the system’s resources utilization. However, a
relatively high value is recommended for maximum server performance. The
default is 100.

KeepAliveTimeout — Sets the amount of time the IBM HTTP Server holds
the connection for a subsequent request before closing it on
acknowledgment. Webmasters should consider the trade-off between
network bandwidth and server resources when changing this value (the
default is 15 seconds). However, it is not advisable to raise this value to more
than 60 seconds. The timeout value after the request has been received is
governed by the Timeout directive mentioned below. A large value is not
advisable because it blocks the system resources if no requests are
submitted.

Timeout — Sets the amount of time the IBM HTTP Server waits for these
three events:

 • Time taken to receive a GET request

 • Time taken between receipt of TCP packets on a POST or PUT request

 • Time taken between acknowledgments on transmissions of TCP packets
in responses

The default is 300 seconds.

KeepAlive — Enable or disable persistent connections. Ultimately, the
webmaster can decide not to support the persistent connections feature by
turning it off (the default is on).

7.1.3.3 Resource Usage
In this category, the directives determine values related to the operating
system and apply for resource usage. The limitation configured by each
directive restricts the resource usage of the httpd child processes.

Note: The directives explained in this section are not included in the default
configuration file since they are normally not used, because they can (or even
should) be specified on the operating system level, if required. These
directives should only be used when the values need to be set lower that
what the operating system permits.
Performance and Scalability 161

RLimitCPU — Sets the soft and hard limits for CPU utilization. This limits the
amount of time the CPU should be utilized by a process, and is expressed in
seconds per process. If the machine is solely dedicated to performing as a
Web server, a high value does not limit client request processing. On the
other hand, taking too much CPU time in a multipurpose server may result in
a degrading of performance for other areas.

RLimitMEM — Sets the soft and hard limits for the memory usage (in bytes)
per httpd child process. The webmaster should consider this value when
deciding on the corresponding value in the MaxClients directive in 7.1.3.1,
“Process Handling” on page 158.

RLimitNPROC — Sets the soft and hard limits for the number of processes
per user. For the case of CGI processes running under the Web server’s UID
(which is the normal case), the limitation set with this directive restricts the
number of processes the server itself can create by forking. Thus, it might
limit the server’s ability to create new httpd processes.

SendBufferSize — Specifies the TCP buffer size in bytes.

7.1.3.4 Resolution and Mapping
This category includes the directives that affect the httpd processes
specifically in the client-parsing phase in the runtime environment.

HostnameLookups — Enables or disables DNS lookups to be performed
such that host names (rather than IP addresses) can be logged. Such a
translation, though useful to CGI or SSI scripts and logging, incur additional
latency. Furthermore, webmasters should recognize the trade-offs when
using the values allow from domain or deny from domain (refer to 2.3.1,
“Security Modules” on page 20 for more information). These add even more
latency by performing a double (reverse and forward) lookup for security
purposes. To increase performance in any case, webmasters should set the
HostnameLookups directive to off. However, this does not completely seal the
fate for the need of a hostname translation. The following are three
recommended methods to obtain the hostname:

1. Scoping the use of HostnameLookups directive limits the scope and
performs host name translation only when necessary. For instance, enable
host name translation for certain file extensions only, as shown below:

HostnameLookups off
<Files ~ "\.(html|cgi)$>

HostnameLookups on
</Files>
162 IBM HTTP Server Powered by Apache on RS/6000

2. Consider using the gethostbyname call in CGI programs to obtain the host
name.

3. The utility logresolve, provided in the /usr/lpp/HTTPServer/sbin directory,
can also be used to look up host names from logged IP addresses offline,
or even on another system. The syntax for the use of this program is:

logresolve [-s statfile] [-c] < input > output

Options — Grants certain server features in the specified directory. The
server features are enabled by stating the corresponding values. There are
two parameters that affect the behavior in which directories are mapped when
requested, as shown below:

 • FollowSymLinks — The server follows symbolic links in the specified
directory.

 • SymLinksIfOwnerMatch — The server follows symbolic links only if the
target file or directory and the link is owned by the same user ID.

If FollowSymLinks is not specified in the URL-space, the server needs to do
additional system calls to check for symbolic links, which might incur some
performance burdens. The example below shows a configuration for the
server’s root directory (for example, http://<server>/index.html). This
definition causes extra execution of the stat() system call on /www,
/www/htdocs, and the document /www/htdocs/index.html.

DocumentRoot /www/htdocs
<Directory />

Options SymLinksIfOwnerMatch
</Directory>

These results are not cached within the server, which causes the checking
procedure to occur for each client request. The same applies for the use of
SymLinksIfOwnerMatch, which is used for security purposes. To optimize the
use of the Options directive with these two parameters, here is what the
webmaster can do:

DocumentRoot /www/htdocs
<Directory />

Options FollowSymLinks
</Directory>
<Directory /www/htdocs>

Options -FollowSymLinks +SymLinksIfOwnerMatch
</Directory>

In the example above, FollowSymLinks is enabled for the entire root
directory, such that extra checks are avoided from the DocumentRoot path. It
Performance and Scalability 163

is then disabled in the specific directory /www/htdocs, but additional checks
for security purposes are configured for that directory through the use of
SymLinksIfOwnerMatch. For ultimate performance, and if security is not the
main concern, webmasters can consider avoiding protection of symlinks
completely by specifying FollowSymLinks for the whole directory tree.

AllowOverride — Enables the use of directives that overrule the server
configuration to directories that contain such directives in the corresponding
.htaccess files. The use of this directive with a parameter ALL causes the IBM
HTTP Server to search for and open.htacess files in each directory in the path
of a requested file. For instance, a request for the URL /index.html (given the
configuration shown below) results in the IBM HTTP Server checking for and
opening the files /.htacess, /www/.htaccess and /www/htdocs/.htaccess.

DocumentRoot /www/htdocs
<Directory / >

AllowOverride all
</Directory>

The effects are similar to that of the FollowSymLinks parameter mentioned
above. Likewise, a better implementation is somewhat similar to the solution
provided for the FollowSymLinks parameter as illustrated below:

DocumentRoot /www/htdocs
<Directory />

AllowOverride None
</Directory>
<Directory /www/htdocs>

AllowOverride all
</Directory>

Here again, if performance is the key issue for the Web server, webmasters
can just specify AllowOverride None for all the directories.

DirectoryIndex — Specifies a list of resources to be returned to a request for
a directory specified in an URL. This is the case when the last portion of the
URL specifies a directory (rather than a file), or when a / is used at the end of
the URL. For example, a request for /www/htdocs/ results in the server
mapping it to a document /www/htdocs/index.html given the configuration
below:

DirectoryIndex index.html

When it comes to performance, using a wildcard for the directive would cause
the server to depend on content negotiation (introduced in 2.1, “Features of
the Apache Server” on page 11) to find out what the client’s browser is
164 IBM HTTP Server Powered by Apache on RS/6000

capable of before delivering a suitable document. It is, therefore, not
recommended to use wildcards for the DirectoryIndex as shown below:

DirectoryIndex index.*

It is, however, recommended to specify a specific list so that the server does
not spend time and resources trying to get the best match. The following is an
example of such an explicit list:

DirectoryIndex index.cgi index.pl index.shtml index.html

7.1.3.5 Logging and Auditing
Log files in any Web servers are a major source of information for
webmasters to keep track of the Web server’s status and for security checks,
too. Webmasters can control the amount of information to be logged or even
whether to enable or disable logging at all. Since logging creates some
overhead that degrades Web server performance, webmasters should review
the settings for logging and keep them at a minimum. More about logging and
auditing can be found in 5.7, “Logging” on page 97 and 5.8, “Auditing” on
page 104.

7.2 Performance Monitoring

In the first part of this chapter, the basic guidelines for performance issues
were explained to remind and caution webmasters when they consider the
hardware and the configurations that may affect the performance of the IBM
HTTP Server. After setting up the Web server, tuning the configuration
parameters is the fastest and the cheapest way to improve the performance.
From then on, webmasters need to find out if changing some parameters
actually improved the performance at all. Others may wish to do some data
collection of the behavior of the Web server before they consider which
parameters or changes are most suitable for their specific environment. In
this section, some techniques of performance monitoring are presented to
facilitate the webmasters in their work.

7.2.1 Hardware and Operating System
The IBM HTTP Server can just be considered an application that runs under
AIX on an IBM RS/6000. Any performance-tuning guidelines and tools that
apply to other applications also apply to the IBM HTTP Server. AIX comes
with a set of utilities that allow a system administrator to monitor the
utilization of the system resources in order to identify potential bottlenecks.

The following shows some useful utilities on AIX and a simple example of
usage. Most of these utilities have other command-line options that let you
Performance and Scalability 165

select from a variety of information they can provide. For more detailed
information, please refer to the AIX Commands Reference, SBOF-1877, or to
the AIX Performance Tuning Guide, SC23-2365.

vmstat
This very basic, yet powerful utility, displays some statistics about system
resource usage, such as CPU utilization (percentage of user, system, idle,
and waiting times), memory usage, paging activities (page lists, pageins,
pageouts), and number of runnable and blocked processes. The statistics
can be shown once (since system start), or periodically. The following shows
an example where four records are to be displayed with a five second
interval:

vmstat 5 4
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
 0 0 18631 131 0 0 0 0 0 0 263 427 150 4 1 95 0
 0 0 18631 131 0 0 0 0 0 0 183 515 141 5 2 93 0
 0 0 18632 130 0 0 0 0 0 0 171 864 187 9 3 88 0
 0 0 18632 130 0 0 0 0 0 0 240 343 133 7 1 92 0

The most important information to look for and to be aware of is if there are
any blocked processes (second column), if there is much paging going on,
and if the CPU spends too much time waiting for I/O (last column) or user
processes. There should not normally be any blocked processes, there
should be no or very little paging activity and the CPU should, at least for
some periods, report some idle time (second last column).

iostat
The iostat utility reports the statistics for CPU and I/O utilization for system
device such as TTY, disks, CD, and so on. The following is an example for the
usage of iostat, where two sets of statistics are to be displayed with a one
second interval:

iostat 1 2

tty: tin tout avg-cpu: % user % sys % idle % iowait
 0.0 0.0 10.3 2.3 86.0 1.4

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 0.5 1.5 0.3 1213930 3563372
hdisk1 0.8 3.5 0.3 1847210 564560
hdisk2 0.3 0.5 0.3 2128330 246621
cd0 0.0 0.0 0.0 400 0
166 IBM HTTP Server Powered by Apache on RS/6000

tty: tin tout avg-cpu: % user % sys % idle % iowait
 0.0 353.0 22.0 11.0 66.5 0.5

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 0.0 0.0 0.0 0 0
hdisk1 0.1 0.2 0.1 6249 1024
hdisk2 0.1 0.4 0.2 82213 123820
cd0 0.0 0.0 0.0 0 0

Important information that can be gathered from iostat’s output is the
amount (in KB), rate (in KBps), and distribution of disk I/O among several
disks. Similar to the vmstat utility, the percentage of CPU utilization for the
four categories of user, system, idle, and I/O wait is reported as well. Note
that the first reported set of statistics shows the activities since system start,
which explains the higher numbers. Ideally, the disk I/O should be
approximately equally distributed among the disks over time, provided they
perform about the same and have similar I/O throughput characteristics.

sar (System Activity Report)
The sar utility shows the statistics of the CPU activity and also supports
reporting the statistics about paging, queuing, TTY I/O, and much more by
using the corresponding options. The following example shows a report of the
CPU utilization and paging activity (three records with a five second interval).

sar -ur 5 3
AIX HTTPServer 3 4 003825774C00 11/30/98

12:53:16 %usr %sys %wio %idle
 slots cycle/s fault/s odio/s

12:53:21 47 10 0 42
 11147 0.00 3.60 0.00

12:53:26 13 9 0 78
 11147 0.00 0.20 0.00

12:53:31 7 6 0 87
 11147 0.00 0.00 0.00

Average 23 8 0 69
Average 11147 0 1 0

This sample report shows some application-related CPU activity, causing
some page faults.
Performance and Scalability 167

netstat
This is a useful command to check traffic on the network interface. It supports
many options that let you select and tailor the reports. It can also display
information about the error values for each network interface. For example:

netstat -anI tr0
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
tr0 1492 link#2 8.0.5a.b9.39.22 1026188 0 36284 0 0
 c0:00:00:04:00:00
tr0 1492 9.3.1 9.3.1.176 1026188 0 36284 0 0
 224.0.0.1

The example above shows some configuration values and traffic statistics for
the Token-Ring interface tr0. Note that no errors are reported for this
interface.

ps
Displays statistics about the processes running in the system, such as
process ID, memory and CPU utilization. This is a very handy tool to verify
the status and resource consumption of running processes. The following
example displays an excerpt from an output of the ps command.

ps -ef
 UID PID PPID C STIME TTY TIME CMD
 root 1 0 0 Nov 24 - 0:11 /etc/init
ausres4 2160 3384 0 Nov 24 - 0:58 /usr/dt/bin/dtsession
 root 2348 1 0 Nov 24 - 0:00 /usr/dt/bin/dtlogin -daemon
 root 3200 1 0 Nov 24 - 0:00 /usr/vice/etc/afsd -nosettime
 root 3384 2348 0 Nov 24 - 0:00 dtlogin <:0> -daemon
 root 3750 1 0 Nov 24 - 0:23 /usr/vice/etc/afsd -nosettime
 root 3888 1 0 Nov 24 - 0:00 /usr/vice/etc/afsd -nosettime
 root 4148 1 0 Nov 24 - 3:02 /usr/sbin/syncd 60
 root 4390 1 0 Nov 24 - 0:00 /usr/lib/errdemon
 ...

Other valuable information about each process can be displayed using the
many options that are supported by this utility. For example, ps gv gives you
accurate information about each process’ memory utilization.

PTX (Performance Toolbox)
PTX is a very powerful AIX product (not shipped with the basic operating
system) which provides a large set of specialized performance tools to
monitor the system environment and a collection of diverse tools for
identifying performance problems and bottlenecks. The functions supported
by PTX handle the performance monitoring on a system or network and
provide the data in a variety of graphical formats. PTX also has a feature that
168 IBM HTTP Server Powered by Apache on RS/6000

lets you monitor remote machines via a network, displaying all information on
a single graphic screen.

A more detailed description of PTX is beyond the scope of this book and you
should refer to the product documentation for more information.

Other Utilities
Besides the most commonly used utilities described above, there are some
more tools that can be utilized, such as svmon for checking a real memory
usage, iptrace to collect the data between nodes on network, tprof and
netpmon to find out how much CPU time a process is using, and filemon for
monitoring file system activity.

7.2.2 Web Server
A benchmarking tool is provided with the IBM HTTP Server package for
webmasters to analyze how capable the IBM HTTP Server is running on the
environment they had configured. This useful tool is called ab (which stands
for ApacheBench) and it resides in the /usr/lpp/HTTPServer/sbin directory.
The following shows the syntax and options supported to run this program:

Syntax:

ab [options] [http://]hostname[:port]/path

Options:

-n requests Number of requests to perform
-c concurrency Number of multiple requests to make
-t timelimit Seconds to max. wait for responses
-p postfile File containing data to POST
-T content-type Content-type header for POSTing
-v verbosity How much troubleshooting info to print
-V Print version number and exit
-k Use HTTP KeepAlive feature
-h Display usage information (this message)

Below is an example of how webmasters can simulate 20 users, each
requesting a CGI script called test.cgi 10 times using port 80:

ab -n 200 -c 20 www.CompanyA.com:80/scripts/test.cgi

A sample output after running this command is shown next. Note that the
example scenario chosen here involves a CGI script that, as we will explain in
10.2.3, “CGI Performance Considerations” on page 217, results in a
considerably lower response rate as compared to serving static HTML pages.
Performance and Scalability 169

The most important results that webmasters are probably interested in are
the following three items shown:

Complete requests: 200
Failed requests: 0
Requests per second: 29.55

The utility can best be used to evaluate the effect of a certain configuration
change by comparing the reported numbers before and after the change.
Webmasters can vary the values for the options to impost more rules for the
data collection using the ab utility.

Note that the ab utility cannot be used to test resources that are SSL enabled
due to different protocol handshaking issues.

This is ApacheBench, Version 1.2
Copyright(c)1996 Adam Twiss,Zeus Technology Ltd,http://www.zeustech.net/
Copyright(c) 1998 The Apache Group, http://www.apache.org/

Benchmarking www.CompanyA.com (be patient).........
Server Software: IBM_HTTP_Server/1.3.3
Server Hostname: www.CompanyA.com
Server Port: 80

Document Path: /scripts/test.cgi
Document Length: 8749 bytes

Concurrency Level: 20
Time taken for tests: 6.769 seconds
Complete requests: 200
Failed requests: 0
Total transferred: 1930708 bytes
HTML transferred: 1872286 bytes
Requests per second: 29.55
Transfer rate: 285.23 kb/s received

Connnection Times (ms)
min avg max

Connect: 2 4 29
Processing: 430 579 1050
Total: 432 583 1079
170 IBM HTTP Server Powered by Apache on RS/6000

7.3 Scalability for the IBM HTTP Server

In most cases, the load on a new Web server cannot be exactly estimated or
calculated. Even if the load history of a Web server is well known, a new
application, potentially targeting new users, can dramatically increase the
load within a short period of time.

While tuning does increase the performance of a Web server, other methods
and plans need to be prepared if the load grows beyond expectations. The
term scalability generally addresses the issue of growing beyond the
capabilities of a single server. If a server is not powerful enough for the load it
should handle, there are basically two solutions: Upgrade the hardware to a
more powerful system (for example by adding more processors to a
multi-processor system) or add other systems and create some kind of a
single-system image (for example by adding nodes to an RS/6000 SP
system). The first solution does not require any special setup other than
some possible configuration changes to optimize performance on the new
system. For planning purposes, however, Web server hardware should be
selected so there is room for upgrading should it become necessary. The
latter solution does require some special considerations. Adding additional
server machines provides a path for almost unlimited growth, but it creates
some new obstacles to overcome. The most obvious concern is that multiple
servers will have multiple IP addresses associated with them. Thus, a user
only accesses a particular server by specifying its hostname in the URL of a
request, unless special methods are implemented that let multiple systems
appear as if they were one single system. Such methods are available that
also incorporate some means of load balancing among the servers. Another
issue is that multiple servers must be able to access the same data,
especially when Web applications are involved.

The following sections describe these considerations and possible solutions.
Please bear in mind that the following is only a brief introduction to these
topics. For more details, please visit http://www.software.ibm.com/enetwork, or
study the redbook Load-Balancing Internet Servers, SG24-4993.

7.3.1 Load Balancing
As mentioned above, a single machine may not be enough to support the
total transaction volume. When multiple servers are being used to handle the
load, it becomes necessary that they all share the load and that there must be
a load balancing mechanism in place.

The two most commonly used methods for load balancing and single system
imaging are Round-Robin DNS (RR-DNS) and specialized vendor products,
Performance and Scalability 171

such as the IBM eNetwork Dispatcher. Both methods are discussed in the
sections that follow.

7.3.1.1 Round-Robin DNS
Round-Robin DNS is a relatively simple method of load balancing. A DNS
(Domain Name System) server provides name to address resolution and is
always involved when a hostname is included in a URL. A RR-DNS server
has the capability of resolving one single hostname into multiple IP
addresses, such that requests for a single URL (containing a hostname) are
actually pointed to different Web servers. Figure 32 shows the principles of
Round-Robin DNS.

Figure 32. Principle of Round-Robin DNS

Clients in the upper left corner (see Figure 32) request a name resolution for
the same hostname, but get different IP addresses to spread the load among
the Web servers. In a simple configuration, the RR-DNS server will just cycle
through the list of available servers. This works fine if the requests create
about the same load on a server, and the servers have the same performance
characteristics. This is, however, not real load balancing. Most actual

www.CompanyA.com

www.CompanyA.com

www.CompanyA.com

1.1.1.1

1.1.1.2

1.1.1.3

1.1.1.11.1.1.21.1.1.3

Web Servers

Round-Robin DNS
Server

Clients
172 IBM HTTP Server Powered by Apache on RS/6000

RR-DNS servers incorporate advanced algorithms for assigning addresses to
names. Such algorithms may take into consideration a performance factor for
each Web server or an actual status of the current load of each server. The
advantage of RR-DNS is its easy implementation. The IBM eNetwork
Dispatcher (see also the following section), together with a DNS server, can
provide Round-Robin DNS services.

7.3.1.2 IBM eNetwork Dispatcher
The IBM eNetwork Dispatcher is a software running on IBM AIX and other
platforms for the balancing of server load by routing TCP/IP session requests
to different servers in a group of servers. This is accomplished by a function
called advisors which query and evaluate the load of the servers on the
network, and then transfer that information to the manager. The following
figure, Figure 33, shows the eNetwork Dispatcher operation between the
clients and the Web servers.

Figure 33. eNetwork Dispatcher Operation Flow

The manager, as part of the IBM eNetwork Dispatcher product, routes the
clients’ requests to the appropriate Web server based on current load

Web Servers

Manager Advisors

Requests

Responses

Load
Information

eNetwork Dispatcher

Clients
Performance and Scalability 173

information received through the advisors. The Web servers process the
requests and respond directly to the clients.

7.3.2 File Sharing
Once multiple Web servers are in place, providing a single-server image to
process clients’ requests, additional mechanisms must be implemented so
that they all serve the same set of data. The most primitive (but not
necessarily the worst) solution would be to distribute the data to each
server’s local disk(s) and keep them synchronized with simple file copy
operations. In most cases, however, a shared filesystem is being used among
the Web servers. Unfortunately, unless special provisions are being taken, a
shared filesystem can add a new bottleneck if multiple servers access it at
high rates. If that shared filesystem is being accessed through the same
network interface as the Web traffic flows through, the total traffic easily
doubles.

In the following three sections, solutions are briefly introduced and explained.

7.3.2.1 General Parallel File System (GPFS)
The General Parallel File System (GPFS) is a standards-based high
performance, high-availability filesystem specifically designed for IBM
RS/6000 SP systems. It features, among other aspects, client-side caching,
read-ahead and write-behind, and large file block support. If multiple Web
servers are implemented on an IBM RS/6000 SP system, the GPFS is the
ideal filesystem for a high-performance Web server cluster. GPFS utilizes the
high speed SP switch and does, therefore, not interfere with any other traffic
on regular network interfaces, leaving the full bandwidth available for
application traffic.

Besides the performance advantage, GPFS offers means for availability, such
as data replication and self-recovery after error detection. It is, however,
limited to an RS/6000 SP system environment and cannot be used among
standalone RS/6000 systems.

More information about the GPFS can be found at
http://www.rs6000.ibm.com/software/sp_products.

7.3.2.2 Distributed File System (DFS)
DFS is an advanced method for file sharing among different systems and
even different system architectures. It overcomes most shortcomings of the
popular NFS (Network File System) that is commonly used as a shared
filesystem (see next section). DFS was developed from the popular Andrew
File System (AFS) and is adopted and supported by the Open Software
174 IBM HTTP Server Powered by Apache on RS/6000

Foundation (OSF) as a vendor-independent industry standard. DFS is very
similar to AFS, and, with respect to Web servers and the discussion here,
they can serve the same purpose with the same advantages over
conventional file systems. In fact, AFS is part of the IBM WebSphere
Performance Pack for the reasons mentioned here.

The major advantages of DFS are its scalability and performance. It has a
unique protocol (on top of UDP) to manage the file and control information
exchange between servers and clients. The superior performance results
from its efficient, adaptive protocol and client-side caching. Scalability is
achieved by its distributed database that stores and manages fileset location
information. Users do not have to know the location of any file; DFS appears
to them as one single file tree, no matter how large the file space is and how
many DFS file servers there are. The DFS file tree is the same on every client
that accesses DFS. Administrators manage the file space in units (called
filesets) and assign them to individual DFS file servers. Moving filesets to
different DFS file servers can be done online and even replicating filesets for
improved availability is supported.

DFS file servers and clients are available from most major vendors for a
variety of platforms. More information about DFS can be found at
http://www.transarc.com/Product/EFS/DFS.

DFS offers a tremendous advantage over other solutions in terms of
shared file access. Assuming a Web server has access to the DFS file
space, anyone can easily publish his or her own Web pages without any
administrative overhead, such as file transfer to the Web server.

The IBM site in Austin, Texas, for example, runs a large DFS file space with
more than 4 TB online storage. The site Web server, based on Apache, has
access to this DFS file space, namely the user’s home directories in DFS.
Through the mechanism described in 5.3, “User Directories” on page 85,
each user can publish his/her private Web pages just by saving files in a
particular subdirectory of his/her home directory. There is no need for any
file transfer or any other administrative action. As soon as the user saves a
file, it is immediately available through the Web server to anybody. This is a
very effective way for Web publishing when multiple authors are involved,
especially when looking at the numbers. There are several thousand users
with personal home directories in DFS in the IBM Austin site.

DFS for Personal Web Pages
Performance and Scalability 175

7.3.2.3 Network File System (NFS)
NFS is a technology developed by Sun Microsystems and shipped with AIX
that provides the ability to transparently access the files on remote systems.
The architecture is comprised of some layers such as XDR (external data
representation) which is a common format used for data exchange between
heterogeneous machines on a network, RPC (Remote Procedure Call) which
is able to execute any procedure related to the process called on the remote
machines, and UDP (User Datagram Protocol) which is a stateless data
transfer protocol. As its use is relatively easy and it has been around for a
while, NFS is being widely used. Although improvements are being
introduced with a newer version, the traditional NFS implementation is limited
in scalability and performance. Since a client needs to know the server where
a file (or directory) is located, manageability, flexibility and recovery in large
environments may become difficult. When multiple Web servers are operated
using NFS as a shared filesystem, performance restrictions limit the overall
size of such a solution.
176 IBM HTTP Server Powered by Apache on RS/6000

Chapter 8. Building HTTP Server Modules

Extending the capabilities of the IBM HTTP Server can be accomplished with
modules. This chapter provides a technical introduction to DSO modules. It
also provides examples of how to build dynamically loadable modules from
their source files. There is an exhaustive list of modules that people around
the world have written for Apache, but to use these modules with the IBM
HTTP Server, they will need to be built against the IBM HTTP Server header
files. The module-build process will be shown as a common example,
mod_info. This module extends the IBM HTTP Server such that its status can
be queried using a Web browser and the appropriate URL.

8.1 The Programmer’s View of DSOs

Section 2.2, “The Apache Server Model” on page 14 briefly introduced the
DSO concept from the webmaster’s point of view. A programmer, on the other
hand, needs to know how DSO interoperates with the core Web server
process. This section gives you a high-level introduction to how modules and
the core server work together. Later sections of this chapter explain how such
modules can be added to the IBM HTTP Server.

The Apache server has a module table containing hooks for the modules to
attach to. Hooks are logical representations for the events when the server
invokes program execution of the DSOs. In particular, the program code
found in the modules dedicated to performing and reacting to these
occasions, is executed. These program codes, or functions, are known as
handlers, as illustrated in Figure 34 on page 178. Thus, at compile and link
time, the handlers register themselves in the module table containing hooks
so that the handlers and the hooks build the run-time connection between the
IBM HTTP Server program and the modules. The HTTP server program then
activates the respective DSO when necessary to leave the execution to the
modules. This is all completely transparent to the clients (Web browsers and
the users).
© Copyright IBM Corp. 1999 177

Figure 34. Hook and Handler Relation

As explained earlier, the modules register themselves into the module table
when building (compiling/linking) the server core using a structure called
module. Each module uses this structure to register its handlers for the hooks
available in the server. As an example, the structure of the CGI module
(mod_cgi) is shown below:

The Apache server currently supports no less than 18 different hooks (as can
be seen in the module structure above) that modules can cling on in order to
add some functionality to the server.

Module
Table

Handler
Module

Hook

module MODULE_VAR_EXPORT cgi_module =
{
 STANDARD_MODULE_STUFF,
 NULL, /* initializer */
 NULL, /* dir config creater */
 NULL, /* dir merger,default override */
 create_cgi_config, /* server config */
 merge_cgi_config, /* merge server config */
 cgi_cmds, /* command table */
 cgi_handlers, /* handlers */
 NULL, /* filename translation */
 NULL, /* check_user_id */
 NULL, /* check auth */
 NULL, /* check access */
 NULL, /* type_checker */
 NULL, /* fixups */
 NULL, /* logger */
 NULL, /* header parser */
 NULL, /* child_init */
 NULL, /* child_exit */
 NULL /* post read-request */
};
178 IBM HTTP Server Powered by Apache on RS/6000

In the following section, each of these hooks is described in more detail. In
addition, the respective standard modules registered to particular hooks are
listed. Further discussion of each module can be found in 2.3, “Standard
Modules in the Apache Server” on page 18.

Hooks, in general, can be grouped into two categories: those concerning the
server’s environment, called the Config Phase, and those concerning the
clients’ requests, called the Request Phase. The first six hooks discussed in
the following section deal mainly with the server configuration and module
initialization stage when the server starts up. In this stage, the server reads
the appropriate configuration file(s) before it does any client request
processing in the request phase. These configuration files include the
httpd.conf and the .htaccess files. Following that, the modules become
initialized since the server knows which of them are registered for the hooks
in the module table.

8.1.1 Hooks for the Config Phase
Following is a list of the hooks (that apply to the server config phase) with
their numbers, names, and a brief description:

Initialization (1) – The modules that cling to this hook are invoked after the
server is configured and started in order to perform one-time setup steps of
the environment at the module initialization process.

Create Directory Config (2) – There are two occasions when this hook
invokes the modules that are registered to it. One occasion is during the
configuration process when the server reads and processes the default
setting for the main server’s directory configuration. The other occasion is
during specific directory configuration, with reference to the directives defined
in the .htaccess file or the server’s configuration file(s). In any case, if the
server finds a module’s directive defined in these configuration files, the
particular module that defines the directive is called to do the necessary
configuration on the directory specified as the argument of the directive.

Merge Directory Configs (3) – This hook takes care of conflicts between
directive usage in the parent and subdirectories. When the server hits such
conflicts, the respective module is invoked and it resolves the conflicts to
produce the most appropriate configuration for that directory. From then on,
subsequent hooks will make use of this new configuration during the client’s
request processing.

Create Server Config (4) – This hook invokes modules that perform
configuration that affects the environment of the entire server. It is used, for
Building HTTP Server Modules 179

example, to set up the virtual hosts environment (more details on virtual hosts
can be found in 5.1, “Virtual Hosts” on page 71).

Merge Server Configs (5) – Like the Directory Merger hook, this hook also
fine-tunes and resolves any conflicts between servers.

Commands Table (6) – This hook points to a list of directives and their
respective attributes defined in the modules. These attributes include the
syntax, their default values, context, override flag, status, and so on. All this
information is checked against those made in the configuration files during
the configuration-reading process.

8.1.2 Hooks for the Request Phase
Most of the hooks described in the following section apply to the parsing and
handling of clients’ requests. For better illustration of the client request
parsing stage (see also 2.2.2, “Implementation of DSO in the Apache Server”
on page 15) and the description of the hooks there, each request phase is
shown in Figure 35 on page 181, along with a number tag attached to indicate
their actual position in the module table.
180 IBM HTTP Server Powered by Apache on RS/6000

Figure 35. Client Request Parsing Process

Content Handling (7) – This hook points to a table containing the name and
function of each handler, such that the server knows who to locate if the need

Post-Read Request

Translate Path

Header Parse

Fixups

Verify User ID

Check Type

Verify User Access

Content Handling

Logging

Check Access

#15

#18

#08

#11

#09

#10

#12

#13

#07

#14
Building HTTP Server Modules 181

to perform a particular function arises later when serving the clients’ requests.
As the name implies, the functions here are responsible for massaging the
content in the file based on the file properties.

Translate Path (8) – During the translation phase, the server calls any
module registered for this hook in order to allow them to translate the URL
into a filename. Once a translation is done, the server suppresses the rest of
the requesting modules to prevent further redundant translation. However, if
no module is interested in doing the translation, the core server translates it
with reference to the DocumentRoot directive defined in the server
configuration file(s).

Verify User ID (9) – This hook comes after the access checking phase (see
#11 below) and checks the credentials of the users such as the user ID and
password, against the authorization database defined in the server. The
server stops processing other modules on this hook as soon as one module
completes the validation. On the other hand, if no module performs this task,
the server aborts the request with an error message sent to the client.

Verify User Access (10) – This is the last phase for any security verification
to be done before the client’s request is finally accepted. After knowing who is
requesting, the server moves on to check whether the client has the access
rights to obtain the requested document by comparing the credentials
collected in the User Identification phase with the Require directive defined,
for instance, in the .htaccess file in the specific directory (see also 6.2, “Basic
Authentication” on page 118). Here again, there should be at least one
module performing the validation, otherwise, the request is aborted and an
error is returned.

Check Access (11) – This is the first phase where no credentials from the
client are requested, but rather, based on information like the client’s IP
address, the server invokes modules to do a basic check of the client. The
server returns a permission denial error message if any of the modules
opposed the rights for this client.

Check Type (12) – After all the validation and verification of the client, the
eligible client’s request is passed on to the modules to determine the type of
document requested. Thereafter, the one module that has completed the
determination of the document type informs the core server so that the server
can inform the client (Web browser) to act accordingly, for example to ask the
user whether to save a file to disk or open for display.

Fixups (13) – Before the server processes the document and returns it to the
client, the server offers this hook for any modules that wish to perform some
182 IBM HTTP Server Powered by Apache on RS/6000

actions, such as making changes on the request or changing some
environmental variables used in scripts.

Logging (14) – At this point, the client’s request has already been handled,
but this hook allows any modules to capture the events that happened
throughout the request parsing process for logging or future references.

Header Parse (15) – The server invokes the modules registered to this hook
to do a basic check at this early stage based on the request headers and
translated filename. There is no standard module defined for this hook.

Child Init (16) – Modules registered for this hook are being called whenever a
new child process is being spawned by the main process.

Child Exit (17) – This hook informs the registered modules before a child
process terminates for them to perform necessary actions.

Post-Read Request (18) – This is the very first phase that checks the clients’
requests after reading the request headers. This hook permits the invoked
modules to make necessary decisions based on the raw request, but forbids
them to make any modification at this point.

8.1.3 DSO Reference Lists
For your reference, the following two tables list the hooks as well as the
respective standard modules registering to the hooks. Table 14 lists the
hooks and modules applicable to the config phase.

Table 14. Module Matrix, Config Phase

Hook Modules

Initialization (#1) mod_log_agent, mod_log_config, mod_log_referer,
mod_mime, mod_mime_magic, mod_rewrite, mod_status, and
mod_unique_id.

Create Directory
Config (#2)

mod_access, mod_actions, mod_alias, mod_auth,
mod_auth_anon, mod_auth_db, mod_auth_dbm,
mod_autoindex, mod_cern_meta, mod_digest, mod_dir,
mod_expires, mod_headers, mod_imap, mod_include,
mod_mime, mod_mime, mod_negotiation, and mod_usertrack.

Merge Directory
Configs (#3)

mod_actions, mod_alias, mod_autoindex, mod_cern_meta,
mod_dir, mod_expires, mod_headers, mod_imap, and
mod_negotiation.

Create Server
Config (#4)

mod_access, mod_alias, mod_cgi, mod_env, mod_headers,
mod_info, mod_log_agent, mod_log_config, mod_log_referer,
mod_mime, mod_mime_magic, mod_setenvif, mod_so,
mod_speling, mod_userdir, and mod_usertrack.
Building HTTP Server Modules 183

Table 15 lists the hooks and modules that apply to the request phase.

Table 15. Module Matrix, Request Phase

Merge Server
Configs (#5)

mod_alias, mod_cgi, mod_env, mod_headers, mod_info,
mod_log_config, mod_mime_magic, and mod_setenvif.

Commands Table
(#6)

mod_actions, mod_alias, mod_auth, mod_auth_anon,
mod_auth_db, mod_auth_dbm, mod_autoindex,
mod_cern_meta, mod_cgi, mod_digest, mod_dir, mod_env,
mod_expires, mod_headers, mod_imap, mod_include,
mod_info, mod_log_agent, mod_log_config, mod_log_referer,
mod_mime, mod_mime_magic, mod_negotiation,
mod_setenvif, mod_so, mod_speling, mod_status,
mod_userdir, and mod_usertrack.

Hook Modules

Content Handling
(#7)

mod_actions, mod_asis, mod_autoindex, mod_cgi, mod_dir,
mod_imap, mod_include, mod_info, mod_negotiation,
mod_rewrite, and mod_status.

Translate Path (#8) mod_alias, mod_rewrite, and mod_userdir.

Verify User ID (#9) mod_auth, mod_auth_anon, mod_auth_db, mod_auth_dbm,
and mod_digest.

Verify User Access
(#10)

mod_auth, mod_auth_anon, mod_auth_db, mod_auth_dbm,
and mod_digest.

Check Access (#11) mod_access

Check Type (#12) mod_mime, mod_mime_magic, mod_negotiation, and
mod_rewrite.

Fixups (#13) mod_alias, mod_cern_meta, mod_env, mod_expires,
mod_headers, mod_negotiation, mod_rewrite, mod_speling,
and mod_usertrack.

Logging (#14) mod_log_agent, mod_log_config, and mod_log_referer.

Header Parse (#15) –

Child Init (#16) mod_rewrite and mod_unique_id.

Child Exit (#17) mod_log_config.

Post-Read Request
(#18)

mod_setenvif and mod_unique_id.

Hook Modules
184 IBM HTTP Server Powered by Apache on RS/6000

8.2 The Apache Information Module (mod_info)

The Apache Information Module (mod_info) provides a comprehensive view
of the server configuration, including the modules that have been activated
and certain configuration directives from the httpd.conf file. One of the great
benefits of mod_info is that it provides the webmaster with the configuration
parameters for each module. If, for example, you would like to know which
URL Aliases you have defined for your server, you could query mod_info,
which will query mod_alias behind the scenes. The output of mod_info
provides you with the active Aliases for your currently running IBM HTTP
Server. Figure 36 on page 186 is a sample output produced by mod_info.
Note the scroll bar to the right, which is indicating that there is much more
information available than is shown in the figure. Especially interesting (at
least as long as you are not very familiar with the individual modules) is the
list of supported directives per module. The output also lists the settings of all
configuration directives and containers that are not pertinent to any specific
module, such as ServerRoot, DocumentRoot, or any Directory directive.

Once mod_info is imbedded in the IBM HTTP Server, the information page,
as shown in Figure 36 on page 186, can simply be displayed by appending
server-info the Web server’s root URL. Note that this may expose information
about the Web server that is not meant to be available to anybody. Thus,
mod_info is not normally available on production Web servers.
Building HTTP Server Modules 185

Figure 36. Sample Output from mod_info

8.2.1 Building the Apache Information Module (mod_info)
Since the Information Module does not come standard with the IBM HTTP
Server, you will need to acquire the mod_info.c file. There are some security
concerns to exposing the configuration of your server to others, thus the
reason for not including mod_info in the standard IBM HTTP Server
distribution.

In order to build the mod_info module (or any other modules), you will need to
have an ANSI C compiler installed on the system.
186 IBM HTTP Server Powered by Apache on RS/6000

Here are the steps for acquiring and building mod_info:

1. Change directories to the root directory of the IBM HTTP Server install
(/usr/lpp/HTTPServer). Then, change to the apachesrc subdirectory.

2. Unzip the apache_tar.gz file using gunzip, which will create a new file
apache_tar.

If you do not have the GNU zip/unzip utilities, you may download the GNU
source code for gzip/gunzip from many sources, such as, for example:
http://sunsite.unc.edu/pub/gnu/, or the installable binaries from
http://www-frec.bull.com/.

3. Then execute the command tar -xvf apache_tar to unpack the files in the
tar file.

4. Change directories to the newly created apache-1.3/src/modules/standard
directory.

5. From within this directory (see the last step), copy the mod_info.c file to
the directory /usr/lpp/HTTPServer/example_module.

6. Change current directory to /usr/lpp/HTTPServer/example_module.

7. Edit the Makefile.exmpl file. Locate the line below and change it from:

SRCFILE=mod_example

to:

SRCFILE=mod_info

8. Within the current directory, copy the file mod_example.exp to
mod_info.exp.

9. Then edit mod_info.exp and change example_module to info_module.

10.Execute the command:

make -f Makefile.exmpl

which will compile the module and produce the mod_info.so file. Make
sure that the compilation did not abort with any errors.

11.Copy the newly built mod_info.so file to the /usr/lpp/HTTPServer/libexec
directory.

12.Edit the httpd.conf file (in /usr/lpp/HTTPServer/etc unless otherwise
configured) and add the excerpt below at the bottom of the file:

<Location /server-info>
SetHandler server-info
Order deny,allow
Deny from all
Building HTTP Server Modules 187

Allow from <your domain>
</Location>

Replace <your domain> with your DNS domain name, or add any other
access restrictions you wish.

Although a domain name can be used, for maximum security, specific IP
addresses should be used. An example allowing access to only two
specific IP addresses (1.1.1.1 and 1.1.1.2) would be:

<Location /server-info>
SetHandler server-info
Order deny,allow
Deny from all
Allow from 1.1.1.1 1.1.1.2

</Location>

13.In the httpd.conf file, use the LoadModule directive to load the newly built
mod_info.so, and the AddModule directive to enable the mod_info module.
The easiest way to accomplish this would be to copy the last LoadModule
line in the httpd.conf file, and insert the LoadModule line for mod_info after
it. Note that the AddModule directive must go below the ClearModuleList
directive, since the IBM HTTP Server uses the ClearModuleList directive
to prioritize the ordering of modules. To accomplish adding the AddModule
line, place the AddModule line for mod_info after the last current
AddModule line.

An Example of this would be:

Other LoadModule lines here
LoadModule info_module libexec/mod_info.so

ClearModuleList
Other AddModule lines here
AddModule mod_info.c

14.If your server is already running, then you can restart it with the command:

apachectl restart

If the IBM HTTP Server is not running, you can start it with the command:

apachectl start

(The apachectl executable is located in /usr/lpp/HTTPServer/sbin.)

15.If access has been granted to the client you are using with the above
Allow directive, then you should then be able to request the URL
http://<your server>/server-info. Make sure to replace <your server> with
the hostname of your Web server.
188 IBM HTTP Server Powered by Apache on RS/6000

16.You will then see the server configuration information about the loaded
modules and their configuration parameters, as shown in Figure 36 on
page 186.

If, for some reason, you do not get the expected mod-info output page,
then things to check are:

 • You should be accessing the server from a machine that has been
granted access by the Allow directive in the httpd.conf file.

 • If you get any error messages when you start the server on the
command line, or if the error log file (the default file name is
/usr/lpp/HTTPServer/error_log) contains any errors, then these might
give you a better idea of the problem. If the error message mentions
something along the nature of an unrecognized handler, then you might
have a typing error in the SetHandler line, or else you did not include
both the LoadModule and AddModule directives in the httpd.conf file.
Building HTTP Server Modules 189

190 IBM HTTP Server Powered by Apache on RS/6000

Chapter 9. Migration Considerations

This chapter provides guidelines for users who would like to migrate from
their current Web server to the IBM HTTP Server. The descriptions that follow
cover the migration from the IBM Internet Connection Secure Server (ICSS),
Lotus Domino Go, and Netscape Communication Corporation’s FastTrack and
Enterprise Servers. Migration from other Web server products might be
similar to those mentioned above. It is, however, almost impossible to explain
every aspect of a migration, and thus, only the commonly used features are
described in detail later.

Before we go into the details in the subsequent sections, some of the most
obvious differences shall be listed here. Almost all commercial Web servers,
including the IBM Internet Connection Secure Server, Lotus Domino Go
Webserver, Netscape FastTrack and Netscape Enterprise Servers, have
remote administration features with graphical user interfaces. For the IBM
HTTP Server, such a feature might be available in a future release. A proxy
function is available only as an add-on module to the IBM HTTP Server that is
not included in the standard package. The Lotus Domino Go Webserver has
powerful Java-based log reporting tools, a Java Servlet engine, SNMP
management, a text search engine, multithreading, multiple language
support, and more. These features are not (yet) included in the current
version of IBM HTTP Server.

The main advantages of the IBM HTTP Server in comparison with other
commercial Web servers are its modular structure, its industry standard open
architecture (including the availability of source code), its flexible
configuration, and numerous skilled specialists. Also, the IBM HTTP Server
supports virtual hosts, which Lotus Domino Go and ICSS do not.

9.1 IBM ICSS and Lotus Domino Go Webserver

This section covers the migration from the IBM Internet Connection Secure
Server (ICSS) and the Lotus Domino Go Webserver (DGW) together,
because they have almost identical features (and the same code base).

9.1.1 Installation
You can install and run the IBM HTTP Server on the same machine that is
running the IBM ICSS or Lotus DGW, as long as you keep them on different
IP ports. For example, you can run Lotus DGW on the default port 80 and, at
the same time, evaluate the IBM HTTP Server on port 8080. After completion
© Copyright IBM Corp. 1999 191

of the migration, you can stop (and eventually uninstall) Lotus DGW and
switch the IBM HTTP Server to the default port.

9.1.2 Directory Structures
This section presents a brief comparison of the IBM HTTP Server and IBM
ICSS/Lotus DGW default directory structures. You might find this information
in Table 16 helpful when moving files between the servers or when adapting
configuration parameters.

Table 16. Directory Structure (Comparison)

9.1.3 Basic Configuration
Although the IBM HTTP Server’s and IBM ICSS/Lotus DGW’s configuration
files have the same names, they use a slightly different syntax. The IBM
HTTP Server configuration file is more complex and flexible. In this and in the
following sections we will provide some guidelines about how to transfer Web
server configuration information from the IBM ICSS or Lotus DGW to the IBM
HTTP Server.

The most common configuration directives are almost the same for the
subject Web servers. The following table, Table 17, lists the most important of
these directives.

Table 17. Basic Directives (Comparison)

File, Directory IBM HTTP Server IBM ICSS, Lotus DGW

server root /usr/lpp/HTTPServer /usr/lpp/internet/server_root

binaries /usr/lpp/HTTPServer/sbin /usr/sbin

configuration /usr/lpp/HTTPServer/etc/httpd.conf /etc/httpd.conf

logs /usr/lpp/HTTPServer/var/log /usr/lpp/internet/server_root/logs

document root /usr/lpp/HTTPServer/share/htdocs /usr/lpp/internet/server_root/pub

CGI programs /usr/lpp/HTTPServer/share/cgi-bin /usr/lpp/internet/server_root/cgi-bin

Directive Description IBM HTTP Server IBM ICSS, Lotus DGW

Directory where the server is installed ServerRoot ServerRoot

To do DNS lookups or not HostNameLookups DNS-Lookup

User ID under which the server runs User UserID

Group ID under which the server runs Group GroupID

Fully-qualified domain name of server ServerName HostName
192 IBM HTTP Server Powered by Apache on RS/6000

More details about each of the directive mentioned above can be found in the
documentation of the corresponding Web server, or at the appropriate places
in this redbook.

9.1.4 Request Mapping
The request mapping syntax is quite different between the IBM HTTP Server
and the IBM ICSS/Lotus DGW Servers. The core part of the IBM HTTP
Server has only one directive for request mapping: DocumentRoot. It is
equivalent to Pass /* in the IBM ICSS/Lotus DGW configuration. Equivalents
of other request-mapping directives can be implemented using IBM HTTP
Server modules.

The module mod_alias provides equivalents to the Pass /something*,
Redirect, and Exec directives. Some examples of these directives follow.

The IBM ICSS/Lotus DGW directive
Pass /documentation* /webserver/documentation*

should be replaced by the following IBM HTTP Server directive
Alias /documentation /webserver/documentation

The IBM ICSS/Lotus DGW directive
Redirect /other/* http://www.other.org/*

Port on which the server is listening Port Port

IP addresses on which the server is listening BindAddress BindSpecific

File containing the process ID of the server PidFile PidFile

Name of users’ public html directory (this feature is
optional for the IBM HTTP Server)

UserDir UserDir

Log file for request logging (this feature is optional for
the IBM HTTP Server)

TransferLog AccessLog

Log file for error logging ErrorLog ErrorLog

Default file name for requests that include only a
directory part in the URL (this is an optional feature of
the IBM HTTP Server)

DirectoryIndex Welcome

Custom error messages ErrorDocument ErrorPage

Server administrator’s e-mail address ServerAdmin WebMasterEmail

Directive Description IBM HTTP Server IBM ICSS, Lotus DGW
Migration Considerations 193

should be replaced by
Redirect /other http://www.other.org

The IBM ICSS/Lotus DGW directive
Exec /cgi-bin/* /webserver/cgi-bin/*

should be replaced by
ScriptAlias /cgi-bin/ /webserver/cgi-bin/

The IBM HTTP Server module mod_rewrite allows you to migrate the Map
and Fail directives. The usage of module mod_rewrite is quite complex and
you should use it with caution. Below are some simple examples of how to
migrate Map and Fail directives.

First, you must enable rewriting with the directive
RewriteEngine on

Then, use the IBM ICSS/Lotus DGW directive
Map /other* /another*

should be replaced by
RewriteRule ^/other(*) /another$1 [PT]

The IBM ICSS/Lotus DGW directive
Fail /expired/*

should be replaced by
RewriteRule ^/expired/* - [F]

The proxy module is not included in current version of IBM HTTP Server (see
3.1, “Product Contents” on page 33) so we do not describe migration of the
proxy functionality.

9.1.5 Virtual Hosts
The virtual-hosting syntax of the IBM HTTP Server is even more different
from IBM ICSS/Lotus DGW than request mapping. But it is not difficult to
migrate the virtual hosts configuration to the IBM HTTP Server. The IBM
ICSS/Lotus DGW syntax requires the administrator to put an IP address or
server name at the end of the request mapping directive. On the other hand,
the IBM HTTP Server uses the special section <VirtualHost> to describe the
virtual host configuration. So the rule of thumb is:

 • If there is an IP address or host name at the end of a request mapping
directive, migrate this directive to an appropriate <VirtualHost> section.

 • In all other cases, migrate it to the basic part of the configuration file.
194 IBM HTTP Server Powered by Apache on RS/6000

For example, the following IBM ICSS/Lotus DGW configuration
Pass /* /webserver/CompanyA/* 1.2.3.4

Pass /* /webserver/CompanyB/* 1.2.3.5

Pass /* /webserver/default/*

should be replaced by the following fragment in IBM HTTP Server
configuration
DocumentRoot /webserver/default

<VirtualHost 1.2.3.4>

DocumentRoot /webserver/CompanyA

...

</VirtualHost>

<VirtualHost 1.2.3.5>

DocumentRoot /webserver/CompanyB

...

</VirtualHost>

The IBM HTTP Server has more advanced virtual hosting features than the
IBM ICSS/Lotus DGW Server, such as separate log files, access restrictions,
and error messages for each virtual host. You might want to take advantage
of them when migrating.

9.1.6 Authentication and Access Control
The IBM HTTP Server has a number of authentication modules, but none of
them is directly compatible with the IBM ICSS or Lotus GWS Servers. You
must select the IBM HTTP Server authentication module that suites the
situation best and manually transfer all user information. The most similar
authentication to IBM ICSS/Lotus GWS (so called basic authentication) is
supported by mod_auth module. To manage user information, use the IBM
HTTP Server utility htpasswd (see 6.2.3, “Authentication Files and Databases”
on page 124).

The access-control features are quite similar among all subject Web servers,
but the syntax is so different that it is very difficult to do corresponding
configuration.

The following example will give you some ideas about how to migrate
authentication and access-control configuration. The IBM HTTP Server
modules mod_auth and mod_access are required for that configuration.

The following fragment of an IBM ICSS or Lotus GWS configuration file:

Protect /staff/* {
ServerID StaffOnly
Authtype Basic
Migration Considerations 195

PasswdFile /webserver/security/users1
GroupFile /webserver/security/groups1
GetMask All@(1.2.3.*)
PostMask All@(1.2.3.*)
PutMask management,accounting

}

can be replaced by this fragment for the IBM HTTP Server:

<Location /staff>
AuthName StaffOnly
AuthType Basic
AuthUserFile /webserver/security/users2
AuthGroupFile /webserver/security/groups2
<Limit GET POST>

Order deny,allow
Deny from all
Allow from 1.2.3
require valid-user
Satisfy all

</Limit>
<Limit PUT>

Order deny,allow
Allow from all
require group management accounting

</Limit>
</Location>

Take into account that password and group file formats are incompatible
between the Web servers and need to be migrated or recreated manually.

Access-control restrictions in the configuration file can be overwritten by
special access control files in specific directories. To enable that feature, the
IBM ICSS/Lotus GWS uses the ACLOverride On directive and .www_acl files.
The corresponding directive in the IBM HTTP Server configuration is
AllowOverride AuthConfig Limit and it uses .htaccess files.

9.1.7 Logging and Reporting
The IBM ICSS and Lotus GWS support separate log files for access, error,
agent, cache access, and references logging. They also have a rich set of
directives for log files handling and reporting. A major advantage of the IBM
HTTP Server is the possibilities to create custom log files and have separate
log files for each virtual host. The IBM HTTP Server log file handling and
reporting could be done by third party utilities that can be found on the
Internet.
196 IBM HTTP Server Powered by Apache on RS/6000

The IBM HTTP Server supports basic error logging and standard modules for
other logs: mod_log_config, mod_log_agent, and mod_log_referer. The
module mod_log_config supports the TransferLog directive, which creates
Common Log Format log files that are used by almost any Web server,
including the IBM ICSS and Lotus GWS.

The following example shows how to create custom report files that are
equivalent to those created by the IBM ICSS/Lotus GWS reference and agent
log files.

CustomLog /webserver/logs/referer_log "%t \"%{Referer}i\""
CustomLog /webserver/logs/agent_log "%t \"%{User-agent}i\""

9.1.8 Web Applications
There are many ways to deploy Web applications using different technologies
(see also Chapter 10, “Web Applications” on page 213). The following
sections briefly overview the most important of them and the implications on
migration.

9.1.8.1 CGI Scripts
CGI scripts depend mostly on environment variables that they get from the
Web server. Most basic environment variables are the same for all Web
servers. Thus, if you do not use some exotic environment variables, your CGI
scripts should continue to work on the IBM HTTP Server without problems.
Also, remember that the IBM HTTP Server allows you to define environment
variables unconditionally with the PassEnv and SetEnv directives supported
by the mod_env module, and conditionally with the SetEnvIf and
BrowserMatch directives supported by the mod_setenvif module.

FastCGI scripts are also supported through the optional module mod_fastcgi
(see 10.2.3, “CGI Performance Considerations” on page 217).

9.1.8.2 Server-Side Includes
Server-side includes on the IBM HTTP Server are supported by the
mod_include module. You can enable .shtml file parsing by using the
Options +Includes directive in the corresponding <Directory> section.

The IBM HTTP Server and the IBM ICSS/Lotus GWS support the same
syntax for server-side includes. The feature sets differ only very little so you
should not have serious problems during migration.

9.1.8.3 Image Maps
Image maps are supported by the IBM HTTP Server through the mod_imap
module. To enable image maps, use the AddHandler imap-file map directive.
Migration Considerations 197

Although the map-file syntax and image-map handling are different in the IBM
HTTP Server, it is very easy to migrate from IBM ICSS/Lotus GWS:

 • Change all map files extensions to .map.

 • Change all references in HTML documents from
HREF="/cgi-bin/htimage/somewhere/mapfile.txt" to something similar to
this: HREF="/somewhere/mapfile.map"
(in this example /somewhere/mapfile.map is the map file name and location).

 • Edit all map files to adjust the syntax:

 • Change the rectangle and polygon directives to rect and poly.

 • Move each URL in front of the coordinates.

 • Remove parentheses from the coordinates.

 • Change the radius of circles to coordinates of any point on the circle,
which could most easily be done by adding the radius to one of the
center coordinates.

The following example illustrates the changes that must be done.

This is an excerpt of an original file mapfile.txt for the IBM ICSS/Lotus DGW:

default http://www.CompanyA.com
rectangle (50,25) (80,75) http://www.CompanyA.com/sales
circle (100,130) 20 http://www.CompanyA.com/products
polygon (10,10) (40,20) (5,15) http://www.CompanyA.com/support

This is the edited and renamed file mapfile.map for the IBM HTTP Server:

default http://www.CompanyA.com
rect http://www.CompanyA.com/sales 50,25 80,75
circle http://www.CompanyA.com/products 100,130 100,150
poly http://www.CompanyA.com/support 10,10 40,20 5,15

9.1.8.4 API Programs
The IBM HTTP Server API is different from the APIs supported by the IBM
ICSS and Lotus GWS. It is, therefore, not possible to easily migrate programs
written at the API level since more than simple-call translation might be
involved.

9.2 Netscape FastTrack and Enterprise Server

Since the Netscape FastTrack Server and the Netscape Enterprise Server
provide GUI-administration, it is sufficient for some webmasters to rely on them
completely without ever editing the flat configuration files. The IBM HTTP
198 IBM HTTP Server Powered by Apache on RS/6000

Server, running on IBM AIX, at present only uses a flat file for configuration of
the Web server and does not support an administration GUI. Thus, the
migration dwells mainly on the content found in the flat files. The migration
from the Netscape FastTrack Server and the Netscape Enterprise Server to the
IBM HTTP Server is covered together because they have almost identical
features in terms of configuration. The term Netscape Web servers is used in
the following to represent the two servers as one single entity throughout the
discussions.

In the sections that follows, we focus on some of the considerations in the
areas of configuration directives that require manual editing, the directives
used in the dynamic configuration files of the Netscape Web servers (using
.nsconfig file) and those that are directly compatible in both servers (using the
.htaccess file). Note that the .htaccess file is only supported beginning from
Netscape FastTrack Server Version 3.01 and Netscape Enterprise Server
Version 3.0.

9.2.1 Installation
You can install and run the IBM HTTP Server on the same machine that is
running a Netscape Web server as long as you keep them on different IP
ports. For example, you can run a Netscape Web server on the default port 80
and, at the same time, evaluate and configure the IBM HTTP Server on port
8080. After some time, you can sunset the Netscape Web server and, at the
same time, switch the IBM HTTP Server to the default port.

9.2.2 Directory Structures
This section briefly compares the IBM HTTP Server’s and Netscape Web
servers’ default directory structures. However, webmasters should be aware
that the Netscape Web servers run an admin server to administer and
configure the Web servers. Thus, the configuration files may span across
different directories. The admin server has a directory called
/usr/netscape/suitespot/admin-serv/config that was created as a default (note
that another path might be specified during installation). This directory stores
the configuration files. The main configuration file is called ns-admin.conf. The
actual Web server (assuming only one) is configured after installation of the
admin server and its configuration files are located in a directory called
httpd-<server_name>/config, where <server_name> is the name of the Web
server given at the time of installation. The two main configuration files for
Migration Considerations 199

each Netscape Web server are the magnus.conf and obj.conf, which are
more related to the topic of discussion here.

Table 18. Directory Structure (Comparison)

Note: The <ns-home> directory listed in the right column of Table 18 above can
be chosen upon installation. By default, it is either /usr/netscape/suitespot or
/usr/ns-home.

9.2.3 Basic Configuration
This section focuses on the directives supported by the Netscape Web
servers specified in the .nsconfig file. A tool provided to convert these files
into .htaccess files in order to ease migration to the IBM HTTP Server is also
covered.

Table 19. Basic Directives (Comparison)

File, Directory IBM HTTP Server Netscape Web Servers

server root /usr/lpp/HTTPServer /<ns-home>

binaries /usr/lpp/HTTPServer/sbin /<ns-home>/bin

configuration /usr/lpp/HTTPServer/etc/httpd.conf /<ns-home>/admin-serv/config, and
/<ns-home>/httpd-<server_name>/config

logs /usr/lpp/HTTPServer/var/log /<ns-home>/httpd-<server_name>/logs

document root /usr/lpp/HTTPServer/share/htdocs /<ns-home>/docs

CGI programs /usr/lpp/HTTPServer/share/cgi-bin anywhere

Directive Description IBM HTTP Server Netscape Web
Servers

Directory where the server is installed ServerRoot ServerRoot

To do DNS lookups or not HostNameLookups DNS

User ID under which server runs User User

Fully-qualified domain name of server ServerName Hostname

Port on which server is listening Port Port

Hostname that is sent back to client ServerName ServerName

IP addresses on which the server is listening BindAddress Address

File containing the process ID of the server PidFile PidLog
200 IBM HTTP Server Powered by Apache on RS/6000

Table 19 on page 200 shows some basic directives found in both servers,
mainly in the httpd.conf (IBM HTTP Server) and magnus.conf (Netscape Web
servers). It can be seen that the Netscape Web servers may not have some
directives defined, but it does cater the option for other representation in files
like obj.conf and .nsconfig.

The list below illustrates the list of directives supported in the .nsconfig file:

AddType Assigns encoding to file extensions.

ErrorFile Assigns error messages other than default.

RequireAuth Performs user authentication using a userfile.

RestrictAccess Applies access control to resources.

A tool is provided with the Netscape Enterprise Server that converts an
.nsconfig file into a .htaccess file (see description below). The following list
shows the supported directives in the converted .htaccess file:

AuthName The authorization realm name for a directory.

AuthType The authentication type for that directory; only supports
Basic type whereas for IBM HTTP Server, Basic and Digest
are supported.

AuthUserFile The text file containing the usernames and encrypted
password.

AuthGroupFile The text file containing the groups and members.

Limit Applied onto a method specified based on the following
access control directives—order, deny, allow, and require.

Name of users’ public html directory (this feature is
optional in IBM HTTP Server)

UserDir fn=unix-home
(obj.conf)

Log file for requests logging (this feature is optional in IBM
HTTP Server)

TransferLog access
(obj.conf)

Log file for error logging ErrorLog ErrorLog

Default file name for requests that include only a directory
part in the URL (this is optional feature of IBM HTTP
Server)

DirectoryIndex fn=find-index
(obj.conf)

Custom error messages ErrorDocument ErrorFile
(.nsconfig)

Directive Description IBM HTTP Server Netscape Web
Servers
Migration Considerations 201

Converting existing .nsconfig files to .htaccess files
As mentioned earlier, the Netscape Enterprise Server provides a tool to perform
the conversion of .nsconfig files to .htaccess files. To run this script (known as
htconvert), enter these parameters at the command prompt:

<path to Perl> <path to htconvert> <path to obj.conf>

This script converts all .nsconfig files to .htaccess files. Perl must also be
installed in order to run this. For more information, please refer to the
administrator guides or the documentation for the respective Netscape Web
server.

9.2.4 Request Mapping
Generally speaking, there are three concerns when it comes to mapping
requests of directories from a specified URL request and most Web servers
provide features to serve these concerns. In this section, the types of
mapping are discussed and the implementations on both the Netscape Web
server and IBM HTTP Server.

9.2.4.1 URL Mapping (Aliasing)
Aliasing is the mapping of a document directory’s physical pathname to a
defined alias so that the files can be referenced using that alias name. This is
most often used for security purposes. The Netscape Web servers offer a GUI
administration tool to facilitate the configuration of this feature. The resulting
information can then be found in the obj.conf file as shown below:

<Object name="default">
...
NameTrans fn="pfx2dir" from="/admin" dir="/webserver/admin"
...

</Object>

The IBM HTTP Server uses the Alias directive to perform the same function:

Alias /admin /webserver/admin

9.2.4.2 Forwarding URLs (Redirection)
Redirection is the mapping of a URL to another URL on the same server or to
other servers. The Netscape Web servers offer the capability to map to a URL
prefix or to a fixed URL. The implementation of both is very similar, as can be
seen in the excerpt from the obj.conf file below:

<Object name="default">
...
NameTrans fn="redirect" from="/other" url-prefix="http://www.other.org/"
...
202 IBM HTTP Server Powered by Apache on RS/6000

NameTrans fn="redirect" from="/other2" url="http://www.other.org/
test/other2"
...

</Object>

This is how it is implemented in the IBM HTTP Server using the Redirect
directive:

Redirect /other http://www.other.org
Redirect /other2 http://www.other.org/test/other2

9.2.4.3 CGI Directory and CGI File Type
CGI directories and CGI file types are the two methods used by the server to
identify CGI programs on the server. The Netscape Web servers allow a
webmaster to indicate CGI programs either by specifying a directory that
contains only CGI programs or by specifying CGI programs that belong to a
certain file type. For the former method, all files present in the specified
directory are considered CGI programs regardless of the file extensions,
whereas in the latter method, programs can be in any directory, but must
have a specific file extension, usually .cgi, .exe, or .bat.

Using a CGI Directory
The following shows the configuration settings in the obj.conf file for the
assignment of a CGI directory for CGI scripts:

<Object name="default">
...
NameTrans fn="pfx2dir" from="/cgi-bin" dir="/webserver/cgi_scripts"
name="cgi"
...

</Object>

<Object name="cgi">
ObjectType fn="force-type" type="magnus-internal/cgi"
Service fn="send-cgi"

</Object>

The IBM HTTP Server uses the ScriptAlias directive for the equivalent
implementation in the httpd.conf file as shown below:

ScriptAlias /cgi-bin/ /webserver/cgi_scripts/

Using CGI File Type
The following shows the configuration settings in the obj.conf file for the
assignment of a CGI directory conforming to the file types mentioned above:

<Object ppath="/webserver/cgi-filetype/*">
Migration Considerations 203

Service fn="send-cgi" type="magnus-internal/cgi"
</Object>

The IBM HTTP Server offers more flexibility in defining any file types to be
CGI programs, as compared to the Netscape Web servers that restrict it to
only the three file types mentioned above. However, webmasters are
reminded of the effects of specifying file types as CGI programs, such as .exe
file extensions, that might be provided for download, rather than execution.
Also any non-CGI files with those extensions will result in errors when the
server processes them as CGI programs.

The IBM HTTP Server uses a directive called AddHandler in the httpd.conf file
for the specification of file types with extensions .cgi to be run as CGI
programs. Ensure that the execution of CGI programs are enabled using the
Options directive, as shown below with the AddHandler directive:

Options ExecCGI
AddHandler cgi-script cgi

9.2.5 Virtual Hosts
There are three ways in which the Netscape Web servers can be configured
for hosting multiple Web servers. These three ways are briefly introduced
below. Note that for the Netscape Web servers, the definitions for the virtual
servers or hosts can be found in the file obj.conf or the magnus.conf in the
directory /usr/netscape/suitespot/httpd-ServerA/config.

9.2.5.1 Hardware Virtual Servers
Hardware virtual servers is the mapping of multiple IP-addresses to Web
servers that share the same configuration information. The following shows
how they are defined in the configuration file obj.conf:

<Object name="default">
...directives...
NameTrans fn="document-root" address="1.2.3.4" root="/CompanyA"
...directives...

</Object>

The equivalent notation for hardware virtual servers in the IBM HTTP Server
is IP-based virtual hosts (see also 5.1, “Virtual Hosts” on page 71) and the
following clip from the configuration file shows how it is implemented:

<VirtualHost www.CompanyA.com>
 ServerName www.CompanyA.com
 DocumentRoot /webserver/CompanyA/
</VirtualHost>
204 IBM HTTP Server Powered by Apache on RS/6000

<VirtualHost www.CompanyC.com>
 ServerName www.CompanyC.com
 DocumentRoot /webserver/CompanyC/
</VirtualHost>

9.2.5.2 Software Virtual Servers
Software virtual servers is the mapping of one IP address to multiple Web
servers that share the same configuration information. The following shows a
sample of the virtual hosts definition in the file obj.conf:

<Object name="default">
...
<Client urlhost="www.CompanyA.com">

NameTrans fn="home-page" path="/webserver/CompanyA/"
</Client>
<Client urlhost="www.CompanyC.com">

NameTrans fn="home-page" path="/webserver/CompanyC/"
</Client>
...

</Object>

The equivalent notation for software virtual servers in the IBM HTTP Server is
name-based virtual hosts. This is how it is implemented in the httpd.conf file:

NameVirtualHost 1.2.3.4
<VirtualHost 1.2.3.4>
 ServerName www.CompanyA.com
 DocumentRoot /webserver/CompanyA/
</VirtualHost>

<VirtualHost 1.2.3.4>
 ServerName www.CompanyC.com
 DocumentRoot /webserver/CompanyC/
</VirtualHost>

9.2.5.3 Multiple Instances
Multiple instances refer to the mapping of unique IP addresses per Web
server that use individual configuration information. Each of these servers
has a config directory and similar sets of configuration files, and each can be
considered an individual server. The file magnus.conf is identical in all the
virtual servers shown below.

For the virtual host called CompanyA:

ServerID CompanyA
ServerName www.CompanyA.com
Address 1.2.3.4
Migration Considerations 205

...
ErrorLog /webserver/CompanyA/logs/errors
PidLog /webserver/CompanyA/logs/pid
...

For the virtual host called CompanyC:

ServerID CompanyC
ServerName www.CompanyC.com
Address 1.2.3.5
...
ErrorLog /webserver/CompanyC/logs/errors
PidLog /webserver/CompanyC/logs/pid
...

The similar configurations required in the IBM HTTP Server httpd.conf file are
as follows:

<VirtualHost 1.2.3.4>
...
ServerName www.CompanyA.com
ErrorLog /webserver/CompanyA/logs/error_log
TransferLog /webserver/CompanyA/logs/access_log
...

</VirtualHost>

<VirtualHost 1.2.3.5>
...
ServerName www.CompanyC.com
...
ErrorLog /webserver/CompanyC/logs/error_log
TransferLog /webserver/CompanyC/logs/access_log
...

</VirtualHost>

The main consideration here for the IBM HTTP Server is whether or not the
virtual hosts share the same or different configuration files. The IBM HTTP
Server offers the flexibility to share configuration files based on either one or
multiple IP addresses. The webmaster needs to put the configuration
parameters inside the <VirtualHost> directive to enforce specific actions on
that particular host, or place them outside that directive to apply these
configurations to all the hosts defined.

For instance, this is how to configure two hosts to share common log files:

...
ErrorLog /webserver/logs/error_log
TransferLog /webserver/logs/access_log
206 IBM HTTP Server Powered by Apache on RS/6000

<VirtualHost 1.2.3.4>
...
ServerName www.CompanyA.com
...

</VirtualHost>

<VirtualHost 1.2.3.5>
...
ServerName www.CompanyC.com
...

</VirtualHost>

9.2.6 Authentication and Access Control
The basic principles of authentication and access control are similar in most
Web servers. The IBM HTTP Server offers several authentication modules to
suit different implementations, which is overviewed in 2.3.1, “Security
Modules” on page 20. On the other hand, the Netscape Web servers also offer
basic authentication of users similar to what the mod_auth module of the IBM
HTTP Server supports. As with the IBM HTTP Server, the Netscape Web
servers support different ways of authentication and access control through
the administration GUI, using the .nsconfig file, or using the .htaccess file.

If the configuration was created exclusively using the administration GUI, the
generated ACL files are different from any files supported by the IBM HTTP
Server, and thus, migration does require some individual work.

The .nsconfig file contains similar configurations as the .htaccess file used in the
IBM HTTP Server. The following shows a fragment of the .nsconfig file used
by the Netscape Web servers:

<Files /staff/*>
RestrictAccess method="(GET|POST)"type="deny"
RestrictAccess method="(GET|POST)"type="allow" ip="1.2.3.*"
RestrictAccess method="(PUT)"type="deny"
RestrictAccess method="(PUT)"type="allow" ip="*"
RequireAuth file=/webserver/security/users2 realm=StaffOnly
userlist=valid-user
</Files>

The following shows a sample of an .htaccess file containing the typical
directives. It is very similar to that used by the IBM HTTP Server (see
example below):

<Limit GET POST>
order deny,allow
Migration Considerations 207

deny from all
allow from 1.2.3
require valid-user

</Limit>
<Limit PUT>

order deny,allow
allow from all
require group management accounting

</Limit>
AuthName StaffOnly
AuthUserFile /webserver/security/users2
AuthGroupFile /webserver/security/groups2

The equivalent version of the .htaccess on the IBM HTTP Server can be
implemented with the help of the modules mod_auth and mod_access. The
following is a sample of an .htaccess file enforcing access control using the
equivalent directives as above:

<Location /staff>
AuthName StaffOnly
AuthType Basic
AuthUserFile /webserver/security/users2
AuthGroupFile /webserver/security/groups2
<Limit GET POST>

Order deny,allow
Deny from all
Allow from 1.2.3
require valid-user
Satisfy all

</Limit>
<Limit PUT>

Order deny,allow
Allow from all
require group management accounting

</Limit>
</Location>

When either the .nsconfig or the .htaccess files are used in the Netscape Web
servers, the userfile and the groupfile are compatible to the ones used by the
IBM HTTP Server, provided that they are of the following simple form:

Userfile format:

username:password
username:password
...

Groupfile format:
208 IBM HTTP Server Powered by Apache on RS/6000

groupname:username username ...
groupname:username username ...
...

Access control restrictions in the configuration file can be overwritten by
special access control files in specific directories. The Netscape Web servers
use their acl-directives, such as Default or Always. On the other hand, the IBM
HTTP Server uses directives like AllowOverride, AuthConfig, and Limit found
in the .htaccess files. However, for the webmasters using the GUI method of
the Netscape Web servers, manual porting to .htaccess files should be done.
The user files are of a different format.

9.2.7 Logging and Reporting
The IBM HTTP Server has the same flexibility in customizing log files as the
Netscape Web servers, besides performing standard logging functions.
Basically the Netscape Web servers offer two log files: access and error log
files. For the IBM HTTP Server, the two files are also present. The logs file
are normally found on the Netscape Web servers in the directory
/usr/netscape/suitespot/httpd-<server_name>/logs. For the IBM HTTP
Server, the default log file directory is /usr/lpp/HTTPServer/var/logs and the
log files found there are access_log and error_log.

The access log files of the Netscape Web servers can be configured in three
formats: common logfile format, flexible log format, or customizable format.
Generally, the configuration settings of any of these are found in the obj.conf
file. The following is an example of the default settings for access logging of
the Netscape Web servers:

Init fn="flex-init" access="/nscape/suitespot/httpd-CompanyA/logs/access"
format.access="%Ses->client.ip% - %Req->vars.auth-user% [%SYSDATE%]
\"%Req->reqpb.clf-request%\" %Req->srvhdrs.clf-status%
%Req->srvhdrs.content-length%"

The following shows the default settings present in the httpd.conf file of the
IBM HTTP Server:

LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog /webserver/log/access_log common

For the Netscape Web servers, there is a log-analyzer tool to analyze the log
data collected. As for IBM HTTP Server, log files can be configured to be
handled by any other third party utilities for analysis. Such utilities are
available on the Web (see also 5.7.3, “Customizing the Log Format” on page
101).The mod_log_config module supports the TransferLog directive for the
creation of log files that adhere to the Common Log Format (CLF) standard,
Migration Considerations 209

which is compatible with other Web servers. In addition, other modules, like
mod_log_agent and mod_log_referer, support logging of additional
information such as the browser agent used and the reference links,
respectively. This is also available in the Netscape Web servers, too. Just
uncomment the # character for this particular attribute, which is a default in
the httpd.conf file of the IBM HTTP Server as shown below:

LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent
CustomLog /<log dir>/referer_log referer
CustomLog /<log dir>/agent_log agent

Or do it directly as shown:

CustomLog /<log dir>/agent_log "%t \"%{User-agent}i\""
CustomLog /<log dir>/referer_log "%t \"%{Referer}i\""

The IBM HTTP Server also supports the creation of separate log files for
each virtual host defined on the system. Likewise, it is not difficult to locate
these log files on the Netscape Web servers since each host is defined under
a separate directory tree beneath the admin server, and their respective
obj.conf file states the rules and location of these log files.

9.2.8 Web Applications
There are various technologies used to implement Web applications on
different Web servers. The following sections present some general
considerations when migrating these applications to the IBM HTTP Server.

9.2.8.1 CGI Scripts
CGI scripts depend mostly on environment variables that they get from the
server. The basic environment variables are the same on most Web servers,
including the Netscape Web servers and the IBM HTTP Server. Two common
CGI variables not supported by the Netscape Web servers are
GATEWAY_INTERFACE and SERVER_SOFTWARE. Other than these, the CGI
scripts should work on the IBM HTTP Server without problems if no other
special environment variables are used. On the other hand, the IBM HTTP
Server allows you to define environment variables unconditionally with the
PassEnv and SetEnv directives supported by the mod_env module and
conditionally with the SetEnvIf and BrowserMatch directives supported by the
mod_setenvif module.

FastCGI scripts are also supported by the optional module mod_fastcgi (see
also 10.2.3, “CGI Performance Considerations” on page 217).
210 IBM HTTP Server Powered by Apache on RS/6000

9.2.8.2 Server-Side Includes
Server-side includes are supported on the Netscape Web servers as well as on
the IBM HTTP Server. Basically, the Netscape Web servers use the ObjectType
directive in the obj.conf file to enable the parsing of .shtml files. As for the IBM
HTTP Server, the Options directives with the +Includes parameter in the
<Directory> directive can be used to permit the use of server-side includes,
and the following must be specified to indicate which file extensions are to be
parsed:

AddHandler server-parsed .shtml
AddType text/html shtml

9.2.8.3 Image Maps
The IBM HTTP Server and the Netscape Web servers all support the
server-side image mapping, as well as client-side mapping. Traditionally,
server-side image maps are necessary for old browsers. The Netscape Web
servers use the Service directive with the Service-class function called
imagemap to handle server-side image maps. For instance, below is a
configuration settings found in the obj.conf file:

Service type=magnus-internal/imagemap method=(GET|HEAD) fn=imagemap

As for the IBM HTTP Server, image maps are implemented using the
mod_imap module. To enable image maps, use the AddHandler imap-file
map directive. For more information about image mapping in the IBM HTTP
Server, see 10.5, “Image Maps” on page 220.
Migration Considerations 211

212 IBM HTTP Server Powered by Apache on RS/6000

Chapter 10. Web Applications

The Web has quickly evolved to an instrument where not only static HTML
pages are available from their providers. Business applications, such as a
classic merchandise catalog and ordering application, presented very
attractive business opportunities for most companies.

This chapter serves as an introduction to Web-application concepts and tools
used to build applications that webmasters might be concerned about. For
more specific Web application development information for developers we
refer you to other pertinent literature, including redbooks (see, for example,
B.1, “International Technical Support Organization Publications” on page
227).

10.1 Concepts

Each day the Internet becomes more and more business-oriented. To use the
World Wide Web for business, static HTML pages are not enough. Special
applications are required to process users’ input and integrate the Web
server with other information systems. Such programs that extend the Web
beyond passive content browsing are called Web applications.

Web application examples can be search engines, such as Yahoo!
(http://www.yahoo.com) or Altavista (http://www.altavista.com), online shops
(such as Amazon.com, http://www.amazon.com), parcel tracking services, such
as FedEx (http://www.fedex.com) or UPS (http://www.ups.com), or Web-based
system management tools, like the IBM AIX 4.3 Java-based system
management tool websm.

Usually, Web applications process user data supplied by HTML forms (see
the example in the following figure, Figure 37 on page 214). Forms can
contain entry fields, selection lists, check boxes and other controls. Each form
has a specific URL of an application that handles the form data. After filling in
the form, a user is typically required to click on a submit button on the form.
At that time, the browser sends the form data in a well defined format to the
Web server. The server subsequently decodes the data and passes it on to a
specified program for processing. The application may respond with an HTML
page that was specifically constructed for that particular instance.
© Copyright IBM Corp. 1999 213

Figure 37. HTML Form Example

Applications (programs) that handle data supplied by Web clients can be
either external (CGI programs) or internal (IBM HTTP Server modules). The
next sections overview both variants.

10.2 CGI Programs

The Common Gateway Interface (CGI) specification was introduced to enable
and standardize the interface between Web servers and external programs.
The CGI is a relatively simple, platform and language independent,
industry-standard interface for Web application development. Programs that
make use of the CGI standard are commonly called CGI programs.

The basic principle of CGI is that a Web server passes client request
information to CGI programs in system environment variables (and in some
cases through standard input or command line arguments) and all standard
output of CGI programs is returned to Web clients. This allows for easy
writing of Web applications in almost any programming language, but has
some performance and security drawbacks (see 10.2.3, “CGI Performance
Considerations” on page 217 and 10.2.4, “CGI Security” on page 218).
Another deficiency to overcome (if necessary) is that the HTTP protocol itself
is stateless and any application that requires more than one step to complete
a task needs to send all related information in each step to keep track of the
steps.

Although widely used in many Web applications, at the time of writing this
book there was no official CGI standard available. Two commonly referenced
214 IBM HTTP Server Powered by Apache on RS/6000

sources of information are http://www.golux.com/coar/cgi, and the NCSA Web
page at http://hoohoo.ncsa.uiuc.edu/cgi. There is, however, a CGI
specification draft RFC available at http://www.ietf.org (search for
draft-coar-cgi-v11-01).

10.2.1 Server Configuration
The IBM HTTP Server supports CGI programs through its standard module
mod_cgi, together with the modules mod_alias and mod_mime. Make sure to
have the corresponding AddModule and LoadModule directives in the server
configuration file, which are put there by default.

There are two general ways to enable CGI program execution:

 • Declare a whole directory as a CGI programs directory

 • Associate a file extension with CGI programs

Each of these serves different purposes, mainly related to security issues
(see 10.2.4, “CGI Security” on page 218). When there is a designated
directory (or directories) for CGI programs, these programs can be better
controlled. When CGI programs are recognized by their filename extension,
they can reside anywhere in the file tree and it is generally more difficult to
assure that some erroneous CGI program in some user’s directories do not
open a back door to the system.

If you want to declare that all files in a particular directory are CGI programs,
use the ScriptAlias directive, as in the following example:

ScriptAlias /cgi-bin/ /usr/lpp/HTTPServer/share/cgi-bin/

In this example, after receiving a request for /cgi-bin/search.pl, the Web
server executes the program /usr/lpp/HTTPServer/share/cgi-bin/search.pl
and sends the standard output of it back to the Web client. The ScriptAlias
directive can be used in the main configuration file, including as part of a
<VirtualHost> section, but not in a <Directory> section or a .htaccess file.

If you would like to associate a filename extension with CGI programs, use
the AddHandler directive. For example:

AddHandler cgi-script cgi

This directive instructs the Web server to treat each file with the extension
.cgi as a CGI program and it will, therefore, attempt to execute it rather than
simply read and send it back to the browser as it would with an ordinary
HTML file.
Web Applications 215

Additional CGI execution control is possible with the Options ExecCGI
directive (more about the Options directive can be found in 4.10, “Options” on
page 67). This option allows you to enable or disable CGI program execution
in individual subdirectories. For example, if you would like to enable execution
of all files with a filename extension of .pl in the /www/html/perl directory, use
the following directives:

<Directory /www/html/perl>
AddHandler cgi-script pl
Options +ExecCGI

</Directory>

The ExecCGI option can be used anywhere in the main configuration file and
also in .htaccess files.

To disable CGI program execution in a particular subdirectory, use the
Options -ExecCGI directive. This has no effect on directories specified with
the ScriptAlias directive.

10.2.2 Environment Variables
Environment variables are the main means of communication between the
Web server and a CGI program. A full description of CGI environment
variables can be found, for example, at
http://hoohoo.ncsa.uiuc.edu/cgi/env.html

There is small Perl script (/usr/lpp/HTTPServer/share/cgi-bin/printenv)
included in IBM HTTP Server distribution which displays the names and
values of all CGI environment variables passed to it. A sample output of that
script is displayed in Figure 38 on page 217.

If you are uncertain about the variables and/or their values, you can replace
your CGI program temporarily with this Perl script to examine the variable in a
certain context. Perl needs to be installed on your system in the /usr/local/bin
directory in order to make this script work. If you do not have Perl installed,
the following Korn shell script does almost the same thing:

#!/usr/bin/ksh

echo "Content-type: text/html\n\n"
export | while read line; do
 echo "$line
"
done
216 IBM HTTP Server Powered by Apache on RS/6000

Figure 38. CGI Environment Variables

10.2.3 CGI Performance Considerations
A major concern with CGI performance is the fact that a CGI program is
started on each client request. This includes additional disk and operating
system activity to create the new process. Quite often, CGI program
initialization, such as connecting to a database management system, also
takes some time that adds to the response time users experience with such
applications.

A possible improvement to this problem is called the FastCGI interface. This
CGI extension allows you to start CGI programs only once, and then reuse
them for subsequent requests. This significantly improves Web server
performance and maintains backward compatibility with old CGI programs.

The FastCGI interface is supported through the mod_fastcgi module, which is
not a standard module shipped with the IBM HTTP Server (or Apache). It can
be downloaded from the Internet. More information about FastCGI and the
mod_fastcgi module can be found at http://www.fastcgi.com.
Web Applications 217

10.2.4 CGI Security
CGI programs greatly increases the capabilities of a Web server, but, on the
other hand, they introduce new security risks. A CGI program has the power
of doing everything that any other program on that system can do, for
example, it can display the contents of the /etc/passwd file. Because of this,
all CGI programs must be carefully reviewed by reliable and qualified
programmers. Also, it is not wise to allow CGI program execution from within
users’ public directories (see 5.3, “User Directories” on page 85).

One of the security precautions is to run all CGI programs under some
special user other than root. This user is specified in the configuration file by
the User directive. By default, it is set to user nobody, but it is better to create
a special user for this purpose (see also 3.6, “Initial Setup” on page 42).

Another recommendation is to keep all CGI programs in one (or a few)
specially designated directories, specified by the ScriptAlias directive. That
allows you better control of these programs. If it is necessary to execute CGI
programs from within other directories, it should be verified that only
trustworthy people have write access to these directories.

If the AllowOverride FileInfo Options (or AllowOverride All) directive is used in
the configuration file, CGI program execution can be enabled by the following
directives in the .htaccess file:

AddHandler cgi-script cgi
Options +ExecCGI

Thus, for security reasons, the preferable directive is AllowOverride None.

10.3 Modules

Modules are a very powerful way to create Web applications, though not
necessarily easy. Modules can influent client request processing in almost
any step. The IBM HTTP Server has special C language APIs (Application
Programming Interface) for additional modules. A comprehensive API
description can be found at http://www.apache.org/docs/misc/API.html. Also,
Chapter 8, “Building HTTP Server Modules” on page 177 gives you an
introduction to writing modules.

Because of its complexity, API programs (modules) are not widely used to
create Web applications directly. A more common way is to write modules
that provide their own, simpler, platform-independent and task oriented API.
Examples of such modules are the Perl language interpretation module
mod_perl (see 10.6.3, “Perl” on page 222) or the IBM WebSphere Application
218 IBM HTTP Server Powered by Apache on RS/6000

Server’s Java Servlet Engine (see 10.7, “WebSphere Application Server” on
page 223).

Modules must be compiled to shared libraries. They must also be properly
listed in the Web server’s configuration file. See Chapter 8, “Building HTTP
Server Modules” on page 177 for more information on how to implement
custom modules.

10.4 Server-Side Includes

The server-side includes (SSI) feature allows for modifying of HTML
documents before they are sent to clients. This opens huge additional
opportunities for creating dynamic Web pages, but also has some impact on
server performance, and even on server security if used improperly.

SSI commands control the inclusion of other files into HTML files,
conditionally remove parts of HTML files, and even execute external
programs. For example, the following SSI instruction will be replaced with the
content of the file header.html before the HTML document is sent to the
client:

<!-- #include virtual="header.html" -->

The next example illustrates how to include a part of a document
conditionally. In this example, the link to internal documents will be included
only when the request is submitted from an IP address in the 1.2.3.*
subnetwork range:

<!-- #if expr="$REMOTE_ADDR = /^1.2.3./" -->
Internal Information

<!-- #endif -->

In the following example, the standard output of the specified command
cat /doc/include replaces the SSI command itself:

<!-- #exec cmd="cat /doc/include" -->

These examples certainly do not show all the powerful capabilities of SSI.
More SSI features can be found in the documentation for the mod_include
module.

10.4.1 Server Configuration
Server-side includes are handled by the standard IBM HTTP Server module
mod_include. First, you need to associate the file extension .shtml with the
Web Applications 219

SSI handler. This can be done by adding the following directives to the server
configuration file or the .htaccess file:

AddType text/html .shtml
AddHandler server-parsed .shtml

Then, the SSI feature can be enabled by the following directive in the
corresponding section of the configuration file or the .htaccess file (more
about the Options directive can be found in 4.10, “Options” on page 67):

Options +Includes

With this, every file within the scope of the definition with an extension of
.shtml will be processed by the SSI module before sending it to the Web
client.

10.4.2 Security Considerations
SSI provides, not only additional functionality, but, unfortunately, introduces
some security risk. Some confidential files, for example /etc/passwd, can be
included into a generated HTML document. The concept of SSI also allows
you to execute any shell command and CGI program, so all security
considerations applicable to CGI also apply to SSI.

Some general recommendations regarding SSI security follow:

 • If you have enabled SSI for some directories, be sure that only trustworthy
people have write access to these directories.

 • If you prefer to not allow shell commands and CGI programs execution in
SSI, use the following directive:

Options +IncludesNOEXEC

 • If you would like to disable SSI, use the directive:

Options -Includes

Note that the Options All directive allows SSI processing, including shell
commands and CGI programs.

10.5 Image Maps

An image map is a single image on a Web page that contains multiple links.
By clicking on different image parts you can get different Web pages. There
are two different implementations of image maps:

 • Client-side image maps

 • Server-side image maps
220 IBM HTTP Server Powered by Apache on RS/6000

Client-side image map regions are defined in HTML code and are resolved by
the browser. They were introduced by Netscape Navigator Version 2 and
were then included as standard in HTML Version 3.2. For more information
about client-side image maps, see the appropriate HTML documentation.
Client-side image maps are not further explained in this book.

Server-side image maps have existed since HTML Version 2. In this method,
pixel coordinates of a mouse click (in relation to an image) are sent to the
Web server and resolved to a URL there. The IBM HTTP Server uses the
standard module mod_imap to handle server-side image maps.

Server-side image map handling can be enabled by the directive:

AddHandler imap-file map

Here, map is a file extension of image map files. The contents of this file
describe regions on an image, related URLs and other instructions. Regions
can have rectangle, circle, polygon or point shapes. The closest point region
is used when no other regions are satisfied. A default URL can be specified,
which will be used in case the given coordinates do not fit to any specified
region. The origin of coordinates (x, y) is the upper-left corner of an image.

Let’s look at an example. The image map file sample.map in the document
root directory of the Web server www.CompanyA.com contains:

default /help/images.html
rect /products.html 50,25 80,75
poly http://www.CompanyB.com/info 10,10 40,20 5,15
circle mailto:webmaster@CompanyA.com 100,130 100,150

The current HTML document on the Web browser contains the following
fragment, displaying some sort of a graphic:

If the user clicks on the coordinates 60,50 within that graphic, his request for
http://www.CompanyA.com/sample.map?60,50 will be redirected to the URL
http://www.CompanyA.com/products.html.

Of course, there are more image map configuration possibilities. For a more
detailed description, we refer you to the original mod_imap module
documentation.
Web Applications 221

10.6 Web Applications Development Languages

There are many languages used to write Web applications. Some are widely
used (like Perl or C), others are used in IBM-oriented environments (such as
REXX or IBM Net.Data macros). Here, we provide an overview of the most
popular of them.

In general, programming languages which need to be compiled (like C or
C++) are more complex to use and programs written in these languages
typically run faster. On the other hand, scripting languages (like Perl or C
shell) are more easy to use and maintain, but run slower.

10.6.1 C
C is a general-purpose programming language. It can be used for writing CGI
programs and IBM HTTP Server modules. C programming requires higher
programming skills than script programming. Generally, it takes more time to
develop and debug programs in C as compared to scripting languages. On
the other hand, C is more suitable for big and complex projects. The whole
IBM HTTP Server and the additional modules are written in C. Performance
of compiled C programs is usually much better than scripts.

10.6.2 Shell Script
Shell scripting is the usual way to write small programs in any UNIX
environment.The two most popular shell scripting languages in UNIX are the
Korn shell and the C shell, which have a different syntax but very similar
capabilities. Though programming in shell script is quite easy, performance
and functionality are insufficient in some cases.

10.6.3 Perl
Probably the most popular script language for Web application development
is Perl. Besides the usual advantages of interpreted languages such as fast
and easy programming, Perl has powerful textual data manipulation
capabilities and extensible features. There are many Perl-extension libraries
available on the Internet.

To improve Perl script performance on the IBM HTTP Server, the mod_perl
module was developed, which has a built-in Perl language interpreter.

More information about the Perl language, extensions and the mod_perl
module can be found at http://perl.apache.org, or http://www.perl.com.
222 IBM HTTP Server Powered by Apache on RS/6000

10.6.4 Java
Java is a very popular, platform-independent, and object-oriented
programming language. Primarily, it has been used for creating client-side
Web applications. As the popularity of this language grew, it was used as a
server-side application development language. Java inherited many of its
features from the C++ language. It is relatively complex and requires good
programming skills.

Java programs require a special environment, the Java virtual machine, to
run. They also require additional interfaces to other information systems
(such as databases). The IBM WebSphere Application Server provides the
necessary environment for Java programs and integrates with the IBM HTTP
Server. More about this product can be found in 10.7, “WebSphere
Application Server” on page 223.

10.6.5 PHP
PHP (Hypertext Preprocessor) is an HTML-embedded scripting language
similar to server-side includes, but much more powerful. It allows quick and
easy development of dynamic HTML pages. In general, PHP has better
performance than CGI scripts.

PHP is supported by Apache servers through the mod_php module. This
module and more about the PHP language can be found at:
http://www.php.net.

10.6.6 REXX
REXX is a procedural programming language created for IBM mainframe
computers and later ported to other platforms. It is quite popular in IBM-
related environments. Similar to other interpreted languages, REXX
programming is relatively easy and performance is average.

10.7 WebSphere Application Server

The IBM WebSphere Application Server is a complete runtime environment
for Java-based Web applications. It includes a Java Servlet Engine,
Deployment Manager, Connections Services, Applications Services and the
IBM HTTP Server itself. The advanced version also includes the Enterprise
Java Beans (EJB) Engine and Database Server for EJB.
Web Applications 223

The Java servlet engine is implemented in the IBM HTTP Server as the
dynamically loaded module mod_app_server. This ensures better
performance compared to the CGI approach and allows stronger control of
client request processing.

Connection services supports Java servlet access to relational databases
and other external data sources. Application Services, as part of the
WebSphere Application Server, allows you to monitor and manage the
WebSphere Application Server using a graphical user interface.

More about the IBM WebSphere Application Server can be found at
http://www.software.ibm.com/webservers/appserv.

A Java servlet is analogous to a Java applet. The difference is that an
applet runs on the Web client and communicates with the server by TCP/IP
protocol. A servlet runs directly on a server and communicates with the
server through an API. A servlet can also communicate to other
applications on a server and access other information systems (for
example, database management systems) directly through an API.
Servlets and applets communicate between themselves using HTTP
protocol.

Java Servlet
224 IBM HTTP Server Powered by Apache on RS/6000

Appendix A. Special Notices

This publication is intended to help professionals who need to plan for and
implement the IBM HTTP Server on RS/6000 based on the Apache server.
The information in this publication is not intended as the specification of any
programming interfaces that are provided by the WebSphere or the Apache
product. See the PUBLICATIONS section of the IBM Programming
Announcement for the IBM WebSphere Application Server V2.0 product for
more information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM’s product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and integrate
© Copyright IBM Corp. 1999 225

them into the customer’s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service
marks of others.

AIX ® AIX/6000 ®
AS/400 ® eNetwork
HACMP/6000 IBM ®
RS/6000 ® WebSphere
226 IBM HTTP Server Powered by Apache on RS/6000

Appendix B. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

B.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 229.

 • TCP/IP Tutorial and Technical Overview, GG24-3376
 • The Basics of IP Network Design, SG24-2580
 • Load-Balancing Internet Servers, SG24-4993-00
 • Learning Practical TCP/IP for AIX V3.2/V4.1 Users: Hints and Tips for

Debugging and Tuning, SG24-4381
 • Protect and Survive Using IBM Firewall 3.1 for AIX, SG24-2577
 • Building the Infrastructure for the Internet, SG24-4824
 • The Technical Side of Being an Internet Service Provider, SG24-2133
 • Safe Surfing: How to Build a Secure WWW Connection, SG24-4564
 • A Guide to the Internet Connection Servers, SG24-4805
 • Enterprise Web Serving with the Lotus Domino Go Webserver for OS/390,

SG24-2074
 • How to Secure the Internet Connection Server for MVS/ESA, SG24-4803
 • AS/400 e-commerce: Internet Connection Servers, SG24-2150
 • AS/400 Internet Security : Protecting Your AS/400 from HARM in the

Internet, SG24-4929
 • Unleashing AS/400 Applications on the Internet, SG24-4935
 • Accessing CICS Business Applications from the World Wide Web,

SG24-4547
 • World Wide Web Access to DB2, SG24-4716
 • Understanding IBM RS/6000 Performance and Sizing, SG24-4810

B.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs:

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbook SK2T-8038

Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
© Copyright IBM Corp. 1999 227

B.3 Other Publications and Links

These publications are also relevant as further information sources:

AIX Installation Guide, SC23-4112

AIX Commands Reference, SBOF-1877

Apache Server For Dummies, Ken A. L. Coar, ISBN 0-7645-0291-3

A good source for Requests for Comments (RFCs) can be found at:

http://www.isi.edu/rfc-editor/rfc.html

The Apache Week offers a good amount of related information at:

http://www.apacheweek.com

The IBM development and support teams maintain a newsgroup at:

ibm.software.websphere.http-servers at news.software.ibm.com

The HTTP protocol versions and features are explained at:

http://www.w3.org/Protocols

For AIX performance tuning, see the:

IBM AIX Performance Tuning Guide, SC23-2365

AS/400 Redbooks Collection SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SK2T-8040

RS/6000 Redbooks Collection (PostScript) SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037

CD-ROM Title Collection Kit
Number
228 IBM HTTP Server Powered by Apache on RS/6000

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

 • Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download or order hardcopy/CD-ROM redbooks from the redbooks web site. Also
read redpieces and download additional materials (code samples or diskette/CD-ROM images) from
this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

 • E-mail Orders

Send orders via e-mail including information from the redbooks fax order form to:

 • Telephone Orders

 • Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information for customer may be found at http://www.redbooks.ibm.com/ and for IBM employees at
http://w3.itso.ibm.com/.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees
may also view redbook. residency, and workshop announcements at http://inews.ibm.com/.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 229

IBM Redbook Fax Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
230 IBM HTTP Server Powered by Apache on RS/6000

List of Abbreviations

AFS Andrew File System

API Application
Programming Interface

ASCII American Standard
Code for Information
Interchange

ATM Asynchronous Transfer
Mode

CA Certificate Authority

CD-ROM Compact Disc/
Read-only Memory

CERN European Laboratory
for Particle Physics

CGI Common Gateway
Interface

CIDR Classless InterDomain
Routing

CLF Common Log Format

CORBA Common Object
Request Broker
Architecture

CPU Central Processing Unit

CRL Certificate Revocation
List

DBM Database Manager

DCE Distributed Computing
Environment

DES Data Encryption
Standard

DFS Distributed File System

DNS Domain Name System

DSO Dynamic Shared
Objects

EJB Enterprise Java Beans

FRCA Fast Response Cache
Accelerator
© Copyright IBM Corp. 1999
FTP File Transfer Protocol

GIF Graphic Interchange
Format

GPFS General Parallel File
System

GUI Graphical User
Interface

HTML Hypertext Markup
Language

HTTP Hypertext Transfer
Protocol

HTTPD HTTP Daemon (Web
server daemon)

IAB Internet Architecture
Board

IBM International Business
Machines Corporation

ICSS Internet Connection
Secure Server

ID Identificator

IETF Internet Engineering
Task Force

I/O Input/Output

IP Internet Protocol

ISAPI Internet Server
Application
Programming Interface

ISDN Integrated Services
Digital Network

ISO International
Organization for
Standardization

ISP Internet Service
Provider

ITSO International Technical
Support Organization

JDBC Java Dabatase
Connectivity
 231

JPEG Joint Photographic
Experts Group

NCSA National Center for
Supercomputing
Applications

NFS Network File System

NSAPI Netscape Server
Application
Programming Interface

PCT Private Communication
Technology

PKCS Public Key
Cryptography Standard

RAM Random Access
Memory

RFC Request for Comments

RR-DNS Round-Robin DNS

RSA Rivest, Shamir and
Adleman

SHA Secure Hash Algorithm

SMIT System Management
Interface Tool

SMP Symetric
Multiprocessing

SPEC Standard Performance
Evaluation Corporation

SSA Serial Storage
Architecture

SSI Server Side Includes

SSL Secure Sockets Layer

TCP/IP Transmission Control
Protocol/Internet
Protocol

TLS Transport Level
Security

URI Uniform Resource
Identificator

URL Uniform Resource
Locator

WebDAV World Wide Web
Distributed Authoring
and Versioning

WWW World Wide Web
232 IBM HTTP Server Powered by Apache on RS/6000

Index

Symbols
.htaccess 83, 94, 119, 123, 150, 164, 179, 207,
215
.nsconfig 207
.shtml 197, 211
.www_acl 196
/etc/inittab 52
/etc/passwd 119
/etc/rc.httpd 52
/etc/rc.shutdown 53
/usr 49
/usr/local/bin 125
/usr/lpp/HTTPServer 37
/usr/lpp/HTTPServer/etc 55
/usr/lpp/HTTPServer/etc/httpd.conf 43
/usr/lpp/HTTPServer/share/htdocs 57
/usr/lpp/HTTPServer/var/log/access_log 39
/usr/lpp/HTTPServer/var/log/error_log 39, 44
/var 49

Numerics
401, 403, 404 (error codes) 92

401 127
403 116

A
ab 169
abbreviations 231
access control (see also authorization) 112
access.conf 6, 57
access_log 12, 39, 209
AccessFileName 59, 124
acronyms 231
AddDescription 84
AddHandler 197, 204, 215
AddLanguage 89
AddModule 16, 56, 85, 87, 106, 215
advanced configuration 71
AFS 86
aliasing 202
Allow 122, 123
AllowOverride 59, 123, 164
Andrew File System (AFS) 174
Apache 5, 11

building blocks 11
© Copyright IBM Corp. 1999
current version 2
features 11
future 8
GUI enhancement 9
history 1
name 2

Apache Group 2, 12
Apache Week 228
apache_tar.gz 37
apachectl 38, 44, 45, 50, 54, 77
apxs 16
asymmetric cryptography 117
ATM 154
authentication 13, 112, 114, 130

basic 118
digest 127

AuthGroupFile 120
AuthName 120
authorization 92, 112, 115
AuthType 120
AuthUserFile 120, 124
availability 112

B
Base64 115, 136
basic authentication 118
basic configuration 49
BrowserMatch 197, 210
brute-force 114
building blocks 11
byte ranges 12

C
C (programming language) 222
CacheGcInterval 107
CacheRoot 107
CacheSize 107
caching proxy 106
canonical name 75
CBC 135
CERN 1
Certificate Authority (CA) 115, 136
certificates

client 146
from a trusted CA 139
from an unknown CA 142
233

revocation lists 148
root 142
self-signed 136

CGI 13, 150, 203, 214
FastCGI 210, 217

cgi-bin 38
CheckSpelling 106
ClearModuleList 56
CNAME 75
commands

apachectl 77
dbmmanage 38, 125
htdigest 38, 128
htpasswd 38, 124

Communicator (Netscape) 90, 108
config phase (hooks) 179
configuration

advanced 71
basic 49

configuration file 6
connections 12
containers 61
content negotiation 13, 87, 95
cookies 115
CoreDumpDirectory 151
CPU 156
CRL 148
cryptography 7, 112, 117, 130
CustomLog 50, 101

D
data confidentiality 112
data integrity 112, 130
DBM files 13, 125
dbmmanage 38, 125
DCE/DFS 86, 174
decryption 117, 133
default directory structure 37
Deny 122, 123
DER 136
DES 135
DES-EDE3-CBC 135
DFS 86, 174
digest authentication 118, 127
directives 17, 58

AccessFileName 59, 124
AddDescription 84
AddHandler 197, 204, 215

AddLanguage 89
AddModule 16, 56, 215
Alias 202
Allow 122, 123
AllowOverride 59, 123, 164
AuthGroupFile 120
AuthName 120
AuthType 120
AuthUserFile 120
BrowserMatch 197, 210
CacheGcInterval 107
CacheRoot 107
CacheSize 107
CheckSpelling 106
ClearModuleList 56
CoreDumpDirectory 151
CustomLog 50, 101
Deny 122, 123
Directory 59, 62, 77, 119
DirectoryIndex 80, 164
DirectoryMatch 62
DocumentRoot 50, 56, 66, 76, 182, 193
ErrorDocument 93
ErrorLog 50, 56, 76, 78, 101
Files 62, 63, 122
FilesMatch 62
FollowSymLinks 116, 150, 163
Group 43, 56
HeaderName 82
HostnameLookups 97, 115, 162
IdentityCheck 98
IfDefine 62
IfModule 62
IndexIgnore 83
IndexOptions 83, 84
IndexOptions FancyIndexing 81
IndexOptions ScanHTMLTitles 84
IndexOptions SuppressHTMLPreamble 83
KeepAlive 160
KeepAliveTimeout 161
LanguagePriority 89
Limit 121
ListenBacklog 160
LoadModule 16, 56, 215
Location 62, 63, 119
LocationMatch 62
LockFile 50
LogFormat 102
LogLevel 100, 134
234 IBM HTTP Server Powered by Apache on RS/6000

MaxClients 158
MaxKeepAliveRequests 161
MaxRequestsPerChild 159
MaxSpareServers 159
MinSpareServers 159
Name_or_Address 76
NameVirtualHost 76
Options 163
Options ExecCGI 86
Options Includes 86
Options IncludesNOEXEC 86
Options Indexes 80, 85
Options MultiViews 89
PassEnv 197, 210
PidFile 50
Port 55
ReadmeName 82
Redirect 203
Require 120, 122
RLimitCPU 162
RLimitMEM 162
RLimitNPROC 162
Satisfy 122
Script 96
ScriptAlias 203, 215, 218
SendBufferSize 162
ServerAdmin 56, 76, 93
ServerAlias 77
ServerName 56, 76, 144
ServerPath 78
ServerRoot 50, 56, 122
ServerType 55
SetEnv 197, 210
SetEnvIf 197, 210
SnoreBoardFile 50
SSLCachePortFilename 145
SSLCipherSpec 134
SSLClientAuth 145, 148
SSLClientAuthRequire 148
SSLFakeBasicAuth 148
SSLServerCert 145, 146
StartServers 160
SymLinksIfOwnerMatch 116, 150, 163
Timeout 161
TransferLog 76, 78, 101, 209
User 43, 55, 218
UserDir 85, 116, 151
VirtualHost 78, 119, 145, 194

Directory 59, 62, 77, 119

directory indexing 80
directory structure

default 37
recommended 49

DirectoryIndex 80, 164
DirectoryMatch 62
disk I/O 157
disk requirements 37
Distributed Computing Environment (DCE) 126
Distributed File System (DFS) 174
DNS setup 75
DocumentRoot 50, 56, 66, 76, 182, 193
Dynamic Shared Objects (DSO) 11, 14

implementation 15

E
EDE3 135
encryption 7, 21, 113, 117, 125, 130, 133, 135
eNetwork Dispatcher 173
Enterprise Java Bean Engine 31
environment variables 197, 210, 216
error code 92
error logging 12
error messages (customizing) 91
error_log 12, 39, 44, 209
ErrorDocument 93
ErrorLog 50, 56, 76, 78, 101
Ethernet 154
European Laboratory for Particle Physics (CERN)
1
ExecCGI 86

F
fake basic authentication 148
fancy indexes 81
FastCGI 210, 217
Fcntl.pm 125
file uploading 95
filemon 169
Files 62, 63, 122
filesets 33
FilesMatch 62
fingerprint 114, 117
firewall 113
fixes for the IBM HTTP Server 36
FollowSymLinks 116, 150, 163
forbidden (error) 92
FRCA 7
 235

FrontPage (Microsoft) 96
FTP 95
future of Apache 8

G
General Parallel File System (GPFS) 174
GIF images 38
graphic images 13
Group 43, 56
gskre301 33
gskrf301 33
gskru301 33
GUI (future) 9
gunzip 187
gzip 125

H
handlers 177

type-map 87
handshake (SSL) 130
hash 117
HeaderName 82
history of Apache 1
hooks 177
host command 75
HostnameLookups 97, 115, 162
htconvert 202
htdigest 38, 128
htdocs 38
HTML forms 213
htpasswd 38, 124, 195
HTTP 115
HTTP Engine 31
HTTP server 2
HTTP/1.0 118, 228
HTTP/1.1 3, 12, 72, 74, 78, 127, 160, 228
http_server.base 33
http_server.modules 33
http-analyze 103
httpd 38
HTTPd (NCSA) 1
httpd.conf 6, 38, 55, 57, 116, 143, 158, 179
httpd.conf.sample.ssl 38, 146
hypertext 1

I
IBM HTTP Server (introduction) 6

icons 38
ICSS 191
Ident daemon 98
IdentityCheck 98
IETF 97, 129, 130
ifconfig 75
IfDefine 62
IfModule 62
ikeyman 39, 136
image maps 197, 220
IncludesNOEXEC 86
index.html 13, 80
IndexIgnore 83
indexing (directory) 80
IndexOptions 83, 84

FancyIndexing 81
ScanHTMLTitles 84
SuppressHTMLPreamble 83

inetd 54, 55
init 52
inittab 52
installation 39

filesets 33
prerequisites 36

installp image 39
Internet 1, 111
Internet Architecture Board (IAB) 130
Internet Explorer (Microsoft) 78, 90
Internet Service Provider (ISP) 72, 113
intranet 111
iostat 166
IP-based virtual hosts 72
iptrace 169
ISAPI 3
ISO 111

J
JAVA_HOME 136

K
KeepAlive 160
KeepAliveTimeout 161
Kerberos 126
key database 136
key management 112
Korn shell 216
236 IBM HTTP Server Powered by Apache on RS/6000

L
LanguagePriority 89
languages (multiple) 87
language-specific documents 13
Limit 121
ListenBacklog 160
LoadModule 16, 56, 85, 87, 106, 215
Location 62, 63, 119
LocationMatch 62
LockFile 50
log files 37
LogFormat 102
logging 183
LogLevel 100, 134
logresolve 97, 163
lslpp 42
lynx 46

M
MAC 133
magic.default 38
magnus.conf 200
man pages 38
MaxClients 158
MaxKeepAliveRequests 161
MaxRequestsPerChild 159
MaxSpareServers 159
MD5 118, 127, 133, 136
messages 91
Microsoft FrontPage 96
Microsoft Internet Explorer 78, 90, 129
migration 191
mime.types 38
MinSpareServers 159
mkitab 52
module table 177
modules 4, 18, 35

mod_access 20, 123, 195, 208
mod_actions 26
mod_alias 21, 67, 193, 215
mod_app_server 224
mod_asis 29
mod_auth 20, 119, 195, 207, 208
mod_auth_anon 20
mod_auth_db 21, 35, 120
mod_auth_dbm 21, 35, 125
mod_autoindex 26, 80, 82
mod_cern_meta 29

mod_cgi 27, 178, 215
mod_dav 97
mod_digest 21, 128
mod_dir 22
mod_env 24, 197, 210
mod_example 36, 38
mod_expires 29
mod_fastcgi 197, 217
mod_headers 30
mod_ibm_ssl 144
mod_imap 27, 197, 211, 221
mod_include 28, 197, 219
mod_info 18, 24, 36, 177, 185
mod_log_agent 25, 197, 210
mod_log_config 25, 197, 209
mod_log_referer 25, 197, 210
mod_mime 22, 87, 215
mod_mime_magic 23, 38
mod_negotiation 23, 87
mod_perl 218, 222
mod_php 223
mod_proxy 36, 106
mod_rewrite 23, 78, 194
mod_setenvif 28, 197, 210
mod_so 30, 36
mod_speling 28, 106
mod_status 25, 46
mod_unique_id 26
mod_userdir 24, 85
mod_usertrack 26

Mosaic 127
multilingual error messages 94
multiple language support 87
MultiViews 88

N
Name_or_Address 76
name-based virtual hosts 72
NameVirtualHost 76
Navigator (Netscape) 90
NCSA 1
Netcraft Ltd. 2
netpmon 169
Netscape 129, 191, 198

Communicator 90
Enterprise Server 198
FastTrack Server 198
Navigator 90
 237

netstat 168
network I/O 158
network interface 72, 75
NFS 86
nobody user account 42, 150
nonce 128
non-repudiation 112
not found (error) 92
ns-admin.conf 199
nslookup command 75

O
obj.conf 200
ObjectType 211
Options 163

ExecCGI 86
Includes 86
IncludesNOEXEC 86, 150
Indexes 80, 85
MultiViews 89

options 67
OS/2 Warp 3

P
packaging 33
paging space 157
PassEnv 197, 210
Perl 95, 125, 216, 222
persistent connections 12
PHP 223
PidFile 50
ping 75
PKCS10 134
Port 55
POST method 95
preface xiii
prerequisites 36
privacy 112, 130
Private Communication Technology (PCT) 129
processes (main, children) 43
product packaging 33
proxy 106
proxy client configuration 108
proxy server products 108
ps 43, 44, 168
PTX (Performance Toolbox) 168
public-key cryptography 117
PUT method 95

R
rc.httpd 52
rc.shutdown 53
RC2 135
RC4 135
README file 38
Readme.httpserver 37
ReadmeName 82
recommended directory structure 49
redirection 202
request phase (hooks) 179
Require 120, 122
restarting (the IBM HTTP Server) 54
retina 114
RFC 228

1945 92
2068 92
2291 97
931 98
draft for CGI 215

RLimitCPU 162
RLimitMEM 162
RLimitNPROC 162
robot 100
robots.txt 100
root authority 42
rotatelogs 101, 103
RSA 135

S
sar 167
Satisfy 122
scalability 171
scope 61, 116
Script 96
ScriptAlias 203, 215, 218
sections 61

parsing rules 64
security 111

.htaccess file 123
authorization 115
basic authentication 118
basic elements 111
CGI programs 218
cryptography 117
digest authentication 127
logical 113
physical 112
238 IBM HTTP Server Powered by Apache on RS/6000

SSL 129
terms 134

security audit 112
self-signed certificates 136
SendBufferSize 162
server side includes (SSI) 150
ServerAdmin 56, 76, 93
ServerAlias 77
ServerName 56, 76, 144
ServerPath 78
ServerRoot 50, 56, 122
server-side includes (SSI) 197, 211, 219
ServerType 55
servlet 224
Servlet Engine 31
SetEnv 197, 210
SetEnvIf 197, 210
SHA-1 118, 133, 135
shared object 36
shell scripts 222
sidd 145
SMIT 6, 39
SnoreBoardFile 50
srm.conf 6, 57
SSL 7, 11, 33, 129
SSLCachePortFilename 145
SSLCipherSpec 134
SSLClientAuth 145, 148
SSLClientAuthRequire 148
SSLFakeBasicAuth 148
SSLServerCert 145, 146
stability 13
standalone 54, 55
standard modules 18
starting and stopping the HTTP server 52
StartServers 160
strict.pm 125
support for the IBM HTTP Server 36
survey 2
svmon 169
symbolic links 150
SymLinksIfOwnerMatch 116, 150, 163
symmetric cryprography 117
syslog 101
system configuration 8

T
TCP/IP setup 75

telecommunication 1
Timeout 161
tprof 169
TransferLog 76, 78, 101, 209
translation 182
Transport Layer Security (TLS) 129
Triple DES 135
type maps 87

U
uninstallation 47
UNIX 3
UNIX password file 125
updates to the IBM HTTP Server 36
uploading files 95
User 43, 55, 218
UserDir 85, 116, 151

V
variables 216
variants 87
virtual hosts 12, 71, 204
VirtualHost 78, 119, 145, 194
vmstat 166

W
Web Traffic Express 108
WebDAV 96
websm 213
WebSphere 5, 11, 30, 33, 218, 223

Application Server 5
Windows 95 and NT 3

X
X.509 132, 136
XSSI 95
 239

240 IBM HTTP Server Powered by Apache on RS/6000

© Copyright IBM Corp. 1999 241

ITSO Redbook Evaluation

IBM HTTP Server Powered by Apache on RS/6000
SG24-5132-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Printed in the U.S.A.
SG24-5132-00

IB
M

 H
T

T
P

 Server P
ow

ered by A
pache on R

S/6000
S

G
24-5132-00

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. The History of the Apache Server
	1.1 How It All Began
	1.2 The Success of the Apache Server
	1.2.1 Who Uses the Apache Server?

	1.3 IBM’s Choice of Web Server
	1.3.1 The IBM HTTP Server
	1.3.2 IBM’s Participation in the Apache Project

	1.4 The Next Step

	Chapter 2. The Building Blocks
	2.1 Features of the Apache Server
	2.2 The Apache Server Model
	2.2.1 The DSO Concept
	2.2.2 Implementation of DSO in the Apache Server

	2.3 Standard Modules in the Apache Server
	2.3.1 Security Modules
	2.3.2 Translation Modules
	2.3.3 Server-Management Modules
	2.3.4 Real-Time-Handling Modules
	2.3.5 Environment-Changing Modules
	2.3.6 Protocol-Enhanced Modules
	2.3.7 Dynamic-Linking Modules

	2.4 WebSphere and Apache

	Chapter 3. Installation and Initial Setup
	3.1 Product Contents
	3.2 Updates to the IBM HTTP Server
	3.3 Installation Prerequisites and Considerations
	3.4 Default File and Directory Structure
	3.5 Installing the IBM HTTP Server
	3.5.1 Pre-Installation Setup
	3.5.2 Installing Using SMIT

	3.6 Initial Setup
	3.7 Server Process Structure
	3.8 Running the IBM HTTP Server for the First Time
	3.8.1 The apachectl Utility

	3.9 Uninstalling the IBM HTTP Server

	Chapter 4. Basic Configuration
	4.1 Recommended Directory Structure
	4.2 Starting and Stopping the HTTP Server
	4.2.1 Automatic Startup
	4.2.2 Automatic Shutdown
	4.2.3 Restarting the HTTP Server

	4.3 Customizing the Configuration File
	4.4 Enabling DSO Modules
	4.5 Online Documentation
	4.6 The Configuration File
	4.7 Distributed Configuration
	4.7.1 .htaccess and Performance
	4.7.2 Restricting the Directives within .htaccess Files

	4.8 Sections
	4.8.1 <Directory>
	4.8.2 <Files>
	4.8.3 <Location>
	4.8.4 Sections Processing Rules
	4.8.5 Recommendations on Sections Usage

	4.9 Request Mapping
	4.10 Options
	4.10.1 Syntax

	Chapter 5. Advanced Configuration
	5.1 Virtual Hosts
	5.1.1 Concepts
	5.1.2 IP-Based and Name-Based Virtual Hosts
	5.1.3 Setting It Up
	5.1.4 Testing
	5.1.5 Logging
	5.1.6 Compatibility with Older Browsers

	5.2 Automatic Directory Indexing
	5.2.1 Simple and Fancy Indexes
	5.2.2 Adding Text to an Index
	5.2.3 Excluding Files from an Index
	5.2.4 Additional Customization
	5.2.5 Security Considerations

	5.3 User Directories
	5.4 Multiple Language Support
	5.4.1 Server Configuration
	5.4.2 Browser Configuration

	5.5 Customized Error Messages
	5.5.1 Customizing Error Messages
	5.5.2 Multilingual Error Messages

	5.6 File Uploading
	5.7 Logging
	5.7.1 Common Log Format
	5.7.2 Error Log
	5.7.3 Customizing the Log Format
	5.7.4 Rotating the Server Logs

	5.8 Auditing
	5.9 Other Features
	5.9.1 Fixing Typos in URLs
	5.9.2 Caching Proxy Function

	Chapter 6. Deploying Security
	6.1 Basic Elements of Security
	6.1.1 Physical Security
	6.1.2 Logical Security
	6.1.3 Authentication Schemes Supported by the IBM HTTP Server

	6.2 Basic Authentication
	6.2.1 Setting Up Basic Authentication
	6.2.2 Using the .htaccess File
	6.2.3 Authentication Files and Databases
	6.2.4 Performance Impact of Basic Authentication

	6.3 The HTTP/1.1 Digest Authentication
	6.4 Secure Sockets Layer, SSL
	6.4.1 Principles of SSL
	6.4.2 Establishing the SSL Connection
	6.4.3 Cipher Specifications Supported by the IBM HTTP Server
	6.4.4 The Alphabet Soup
	6.4.5 Creating a Self-Signed Certificate
	6.4.6 Using Certificates Signed by a Well-Known Trusted CA
	6.4.7 Requesting a Certificate from an Unknown CA
	6.4.8 Configuring the HTTP Server to Use SSL
	6.4.9 SSL and Virtual Hosts

	6.5 SSL Client Authentication
	6.5.1 Client Certificates and the IBM HTTP Server

	6.6 Security Considerations in the Server Configuration File

	Chapter 7. Performance and Scalability
	7.1 Basic Performance Consideration
	7.1.1 Link Bandwidth
	7.1.2 Hardware and Operating System
	7.1.3 The Web Server

	7.2 Performance Monitoring
	7.2.1 Hardware and Operating System
	7.2.2 Web Server

	7.3 Scalability for the IBM HTTP Server
	7.3.1 Load Balancing
	7.3.2 File Sharing

	Chapter 8. Building HTTP Server Modules
	8.1 The Programmer’s View of DSOs
	8.1.1 Hooks for the Config Phase
	8.1.2 Hooks for the Request Phase
	8.1.3 DSO Reference Lists

	8.2 The Apache Information Module (mod_info)
	8.2.1 Building the Apache Information Module (mod_info)

	Chapter 9. Migration Considerations
	9.1 IBM ICSS and Lotus Domino Go Webserver
	9.1.1 Installation
	9.1.2 Directory Structures
	9.1.3 Basic Configuration
	9.1.4 Request Mapping
	9.1.5 Virtual Hosts
	9.1.6 Authentication and Access Control
	9.1.7 Logging and Reporting
	9.1.8 Web Applications

	9.2 Netscape FastTrack and Enterprise Server
	9.2.1 Installation
	9.2.2 Directory Structures
	9.2.3 Basic Configuration
	9.2.4 Request Mapping
	9.2.5 Virtual Hosts
	9.2.6 Authentication and Access Control
	9.2.7 Logging and Reporting
	9.2.8 Web Applications

	Chapter 10. Web Applications
	10.1 Concepts
	10.2 CGI Programs
	10.2.1 Server Configuration
	10.2.2 Environment Variables
	10.2.3 CGI Performance Considerations
	10.2.4 CGI Security

	10.3 Modules
	10.4 Server-Side Includes
	10.4.1 Server Configuration
	10.4.2 Security Considerations

	10.5 Image Maps
	10.6 Web Applications Development Languages
	10.6.1 C
	10.6.2 Shell Script
	10.6.3 Perl
	10.6.4 Java
	10.6.5 PHP
	10.6.6 REXX

	10.7 WebSphere Application Server

	Appendix A. Special Notices
	Appendix B. Related Publications
	B.1 International Technical Support Organization Publications
	B.2 Redbooks on CD-ROMs
	B.3 Other Publications and Links

	How to Get ITSO Redbooks
	IBM Redbook Fax Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

